
Predator: Directed Web Application Fuzzing for Efficient Vulnerability Validation

Chenlin Wang
The Chinese University of Hong Kong

clwang23@cse.cuhk.edu.hk

Wei Meng
The Chinese University of Hong Kong

wei@cse.cuhk.edu.hk

Changhua Luo
The Chinese University of Hong Kong

Wuhan University
chluo@cse.cuhk.edu.hk

Penghui Li
Columbia University

pl2689@columbia.edu

Abstract—Web application vulnerabilities continue to pose a
significant challenge. Static analysis is currently the mainstream
approach to this issue, while dynamic analysis is not as widely
used in comparison. However, both techniques have their
limitations. While current static analysis tools are plagued
by high false-positive rates, necessitating fine-grained analysis
and substantial expertise, it is also the case that dynamic
analysis tools are underdeveloped. Current fuzzing-based tools
are often limited by inefficiency in exploring deeper code
locations. Moreover, state-of-the-art grey-box fuzzers often
struggle to capture effective parameters from user interfaces,
thereby failing to explore the input space efficiently.

In this paper, we propose PREDATOR, a directed fuzzing
framework equipped with selective dynamic instrumentation for
effective and efficient web application vulnerability detection
and validation. We use static analysis techniques and dynamic
analysis techniques to complement each other. Our lightweight
static analysis provides relevant URLs and parameters of the
directed fuzzing targets and thus facilitates dynamic validation
of static analysis reports. Additionally, we propose a runtime
distance supplementation mechanism and tailored mutation
strategies to address the dynamic features of interpreted
languages like PHP. The evaluation shows PREDATOR effectively
triggers more vulnerabilities and outperforms state-of-the-art
grey-box fuzzers by up to 43.8 times in terms of time to
exposure. Moreover, PREDATOR detects 26 previously unknown
vulnerabilities in real-world applications, further demonstrating
its effectiveness. At the time of writing, 7 of the 26 vulnerabilities
have been confirmed and patched by the corresponding vendors.

1. Introduction

Web applications are extensively deployed in Internet
services, powering a variety of functionalities, from online
shopping to social networking. These applications, irre-
spective of the underlying technology, are susceptible to
a wide range of security threats. These threats can result
in severe consequences, including data breaches, financial

losses, and reputational damage [1]. Common security threats
across web applications include SQL injection [2], command
injection [3], and cross-site scripting (XSS) [4]. PHP is one
of the most popular server-side programming languages for
developing web applications, powering over 76% of web-
sites [5]. As an interpreted language, PHP offers developers
flexibility and ease of use. However, this flexibility can often
result in security vulnerabilities, making PHP applications
particularly prone to these threats.

To mitigate these threats, security analysts have devel-
oped various techniques to detect vulnerabilities in web
applications. For instance, static analysis methods such as
TChecker [6] and RIPS [7] can scalably screen the source
code to identify suspicious security issues using predefined
heuristics. Unfortunately, they often suffer from potential
high false-positive rates, a situation that is counterproduc-
tive [8–11]. Additionally, even state-of-the-art static analysis
tools may not be able to fully model the dynamic features
of PHP, which can lead to imprecise results [6].

Dynamic analysis methods, such as black-box scan-
ning [12–14] and grey-box fuzzing [15–19], aim to identify
vulnerabilities by executing the application and observing
its behavior. Witcher [16] leverages AFL [20] to detect SQL
injection and command injection vulnerabilities for web
applications in multiple languages. By converting semantic
errors into segmentation fault signals detectable by AFL
through customized bug oracles, it enhances the effectiveness
of detecting injection vulnerabilities. Concurrent to our work,
Atropos [18] employs a snapshot-based, feedback-driven
fuzzing method tailored for PHP-based web applications. It
introduces a feedback mechanism to automatically infer the
key-value structure at runtime. Dynamic analysis methods
typically have lower false-positive rates compared to static
analysis methods as they can observe the actual behavior of
the application, rather than relying on heuristics.

Despite the advantages, dynamic methods also exhibit
significant limitations, primarily due to the intricate archi-
tecture and state-dependent nature of modern web appli-
cations [21, 22]. Modern web applications often involve
complex user interactions and maintain rich stateful behaviors

across multiple sessions and interactions. Although coverage-
guided fuzzers are designed to navigate through these states,
they inadvertently expend energy on non-critical areas instead
of focusing on truly buggy states. As a result, certain errors
that only manifest under specific states or conditions may
remain undetected. Furthermore, with the integration of
various third-party modules and libraries, ensuring thorough
coverage becomes increasingly difficult. Each additional layer
of complexity not only makes it harder to predict application
behavior but also increases the resources and time required
for effective testing. This underscores the need for developers
to complement these methods with more sophisticated testing
strategies, focusing on high-risk code locations instead of
exhaustively exploring all possible states.

We aim to harness the strengths and mitigate the weak-
nesses of these methods. Employing directed fuzzing to
validate static analysis reports offers significant potential for
enhancing the detection of vulnerabilities in web applications.
By concentrating resources on identified high-risk targets
generated by static analysis, we can reduce the number of
states requiring exploration in dynamic testing. Directed
fuzzing can, in turn, lower the costs of manual audits
introduced by the high false-positive rates of static analysis.
Unfortunately, applying widely-used directed fuzzing tech-
niques to web applications is non-trivial, primarily because
of the characteristics inherent to the interpreted languages
used in these applications, such as PHP. For example, weak
typing and high levels of dynamism impact the precision of
static analysis, which is crucial for preparation work like
distance calculation.

Although directed fuzzing technique is well-developed
for native programs [23–29], it is not widely available for
web applications. To the best of our knowledge, Cefuzz [30]
is the only directed fuzzer for exclusively detecting remote
code execution (RCE) vulnerabilities. However, there are
several limitations to Cefuzz. 1) Cefuzz uses a coarse-grained
feedback mechanism, which fails to accurately reflect the
distance between the seed and the target. It prioritizes seeds
based on the number of reachable basic blocks (i.e., blocks
from which a path to the target exists on the control-flow
graph (CFG)) they pass through, which does not accurately
reflect the potential of the seeds. When there are multiple
paths of different lengths that can eventually reach the target
code, Cefuzz tends to give priority to the seed that takes
the longest path. 2) Cefuzz performs static instrumentation,
which increases the script length and risks altering the
behavior of the application. It inserts echo statements before
and after statements using the concatenation (i.e., new_line =
"echo(’x’);\n".old_line."echo(’y’);\n";). In such cases, if the
branch statements do not correctly use curly braces to
encapsulate the statements, it can lead to unpredictable
consequences. 3) Cefuzz is closed-source, which limits its
further development and usability.

In this paper, we propose PREDATOR, an efficient di-
rected fuzzing tool for web applications. By selectively
instrumenting the web application at runtime, PREDATOR
stores inter-procedural block distances without altering the
source code. The distance feedback prioritizes in test cases

that are closer to predefined high-risk code locations, thereby
avoiding inefficient random state exploration. Moreover,
PREDATOR updates the block distances at runtime to correct
the imprecise static analysis results and enable exploring
more promising paths. PREDATOR employs novel tailored
mutation strategies for web applications, which are guided by
distance and parameters. It probabilistically adopts different
mutation strategies based on the current input distance
to enhance effectiveness in both exploration and exploita-
tion stages. By employing parameter-to-condition analysis,
PREDATOR concentrates mutations on a group of parameters
involved in condition expressions, targeting deeper areas that
current fuzzers struggle to reach.

To evaluate the effectiveness and efficiency of
PREDATOR, we conducted a comprehensive assessment on
both synthetic and real-world web applications, covering
a wide range of vulnerabilities. Compared to state-of-the-
art fuzzers, PREDATOR detected more vulnerabilities and
triggered them up to 43.8 times faster. We demonstrated that
each component of PREDATOR contributed to the overall
performance. We showcased the effectiveness of PREDATOR
in validating static analysis reports and reducing the manual
auditing efforts. When applying PREDATOR to detect new
vulnerabilities, we identified 26 previously unknown vulnera-
bilities in real-world web applications, 7 of which have been
acknowledged and patched.

In summary, the contributions of this paper are as follows:
• We propose PREDATOR, an efficient directed fuzzing

tool for web applications to detect SQL injection,
command injection, and XSS vulnerabilities.

• We introduce novel techniques to enable and enhance di-
rected fuzzing for web applications, including selective
dynamic instrumentation and tailored mutation strategies
guided by parameters and distance.

• We evaluate PREDATOR on 3 test suites and 11 real-
world web applications. The results show that
PREDATOR detects more vulnerabilities and triggers
them more efficiently than state-of-the-art tools.

• We find 26 previously unknown vulnerabilities in real-
world web applications with PREDATOR. At the time of
writing, 7 of them have been patched, 6 new CVE IDs
(CVE-2024-404[47-52]) have been assigned.

To foster the future research in this area, we will release
the source code at https://github.com/cuhk-seclab/Predator.

2. Background and Motivation

In this section, we provide high-level overview of web
application fuzzing (§2.1) and directed fuzzing for web ap-
plications (§2.2), followed by the research motivation (§2.3).

2.1. Web Application Fuzzing

Fuzzing has been extensively applied to detect vulnera-
bilities in a wide range of software systems, including web
applications. They can generally be categorized based on
the information they rely on, falling into two main groups:

https://github.com/cuhk-seclab/Predator

black-box fuzzing (scanning) and grey-box fuzzing. Black-
box scanning operates under the assumption of no prior
internal information about the target web application. For
instance, Black Widow [12] and Enemy of the State [13]
exemplify black-box approaches by modeling navigation and
constructing the state graph of web applications without prior
internal knowledge. On the other hand, grey-box fuzzing
assumes the availability of such information, such as code
coverage feedback. Atropos [18] applies snapshot-based
techniques to fuzz web applications and infers parameter
keys and values at runtime. WebFuzz [15] instruments the
target web applications for code coverage feedback and
Witcher [16] enhances the runtime.

Witcher tests web applications using PHP common
gateway interface (CGI) binary. The fuzzing process orches-
trated by Witcher unfolds in two distinct phases. Initially,
it functions as a black-box crawler that discovers pages
and parameters. In the second phase, Witcher utilizes the
discovered request information as the foundational seeds
for the fuzzer. Following this, Witcher generates random
payloads to populate GET, POST, and COOKIE. To enhance
the effectiveness of the fuzzing process, Witcher incorporates
an HTTP parameter mutator and HTTP dictionary mutator.
The former facilitates the cross-pollination of interesting
parameter names and values, while the latter introduces
new key-value pairs to the test cases. A dynamic coverage
feedback mechanism based on the PHP opcodes is also
implemented to guide the fuzzing process.

2.2. Directed Fuzzing for Web Applications

Directed fuzzing specially tests target code of interests. Its
effectiveness has been demonstrated primarily in the context
of native applications, as exemplified by the success of
tools like AFLGo [23]. However, the application of directed
fuzzing to web applications is relatively limited. Cefuzz [30]
is a directed fuzzer for detecting RCE vulnerabilities in web
applications. It first conducts static taint analysis to identify
potential sinks. Subsequently, it instruments the source code
to trace the execution paths. It prioritizes seeds by measuring
the number of reachable basic blocks they pass through
without relying on any distance metrics. Unfortunately, its
static instrumentation method not only introduces additional
code but also fails to correctly perform seed selection when
the application is complex. It is ineffective when static
analysis results are imprecise due to the dynamic features
of interpreted languages like PHP. Moreover, it only detects
RCE vulnerabilities, and its source code is not available.

2.3. Motivation

Limitations of Existing Methods. Both static and dynamic
analysis techniques have their limitations. Static analysis
generates reports with many false positives [6, 10, 11, 31].
This issue mostly stems from the fact that static analysis eval-
uates code without executing it, leading to outcomes based on
theoretical inferences rather than actual runtime behavior. As

a result, the tool might label code as vulnerable when certain
conditions for a vulnerability to be triggered may never
materialize at runtime. Furthermore, dynamic languages
such as PHP introduce complexities in their features and
execution behaviors, which static analysis tools often struggle
to precisely model [31]. These issues necessitate extensive
manual review and validation, which becomes a bottleneck
in the efficiency of static analysis tools. Dynamic analysis
tools for web applications primarily utilize coverage-guided
strategies. They implement random exploration techniques,
aiming to traverse through various execution paths in search
of potential security vulnerabilities. However, this approach
faces limitations due to the intrinsic uneven distribution of
vulnerabilities within an application, with most vulnerabilities
often residing in specific, critical functions. This approach
makes random exploration inefficient, as it does not focus on
code segments with higher likelihood of containing vulner-
abilities. Moreover, deep vulnerabilities require navigating
through complex execution paths, which existing coverage-
guided fuzzing might not effectively address.

Note that while vulnerability information can often be
sourced from multiple avenues, such as static analysis tools
and databases of known CVEs, a practical proof of concept
(PoC) to exploit these vulnerabilities frequently remain
unavailable. Therefore, it is crucial to develop a tool capable
of both identifying and effectively triggering these known
vulnerabilities to validate their impact and scope.
A Promising Approach to Bridge the Gap. Utilizing
directed fuzzing for automated static analysis report valida-
tion shows great promise in web application vulnerability
detection. By leveraging directed fuzzing, we can mitigate the
extensive manual review and validation workload, primarily
induced by the high false-positive rates of static analysis. This
is particularly beneficial for dynamic programming languages
like PHP, where the intricacies and dynamic features pose
modeling challenges for static analysis.

3. Challenges

Directed fuzzing achieves remarkable success in native
programs. However, applying it to web applications faces
unique challenges. We list the primary ones below.
Challenge 1: Providing Entry URLs and Request Param-
eters in a Targeted Manner. Fuzzing web applications
requires identifying both entry URLs and request parameters.
In web applications, request parameters are defined as key-
value pairs submitted by clients. Each parameter consists
of a key (a unique identifier) and a value (the correspond-
ing data). For targeted vulnerability detection via directed
fuzzing, the potentially vulnerable code locations are only
accessible through specific entry scripts. These entry scripts
are primarily associated with the front-end components of
the applications. They are designed to provide users with
access to the application’s functionalities. The URLs of these
entry scripts are referred to as the entry URLs for the targets.

Existing tools usually rely on crawlers [12, 13, 16, 17, 32]
and manual efforts [15, 33, 34] to identify URLs. While

effective in coverage-guided fuzzing, crawlers randomly
extract URLs, potentially missing critical entry URLs that
lead to vulnerable code locations and cluttering the dataset
with irrelevant URLs. Manually identifying entry URLs is
inefficient and does not align with our research goal.

Triggering specific vulnerabilities necessitates manipu-
lating both parameter keys and values [35]. Fuzzers often
struggle when lacking the necessary parameters to target
vulnerabilities. Crawlers extract request parameters from the
user interface but lack insight into the application’s internal
logic. Such superficial information fails to assist directed
fuzzers in triggering deeper vulnerabilities.
Challenge 2: Instrumenting Web Applications and Gather-
ing Distance Feedback. Instrumenting web applications for
directed fuzzing is non-trivial. Existing coverage-guided tools
primarily employ two methods: static instrumentation by
modifying source code [15, 30, 34], and dynamic instrumenta-
tion during runtime [16]. Current static instrumentation meth-
ods cannot insert necessary hooks without altering the source
code, which risks enlarging the codebase and even changing
the application’s behavior unintentionally [15]. Moreover,
dynamic languages like PHP may require adjustments to
block distances at runtime due to potential inaccuracies in
static analysis results. Given that the distance information is
embedded within the source code, any required adjustments
necessitate re-instrumenting the entire application, which
is excessively time-consuming. Dynamic instrumentation
involves instrumenting bytecode during program execution.
Witcher [16] leverages the line number and opcode of the
current and prior bytecode instructions to update the code
coverage. On the one hand, it may be expensive to instrument
every bytecode instruction. On the other hand, directed
fuzzing requires computing and maintaining the distance
of each basic block, which bytecode-level instrumentation
cannot fully address.

In addition to instrumenting the web application code,
another common approach involves instrumenting the PHP
interpreter, which is written in C, and testing with a fuzzer
for native programs [20]. By analyzing the coverage of the
interpreter’s code, it may implicitly reflect the coverage
of the target web application. However, this method is
impractical for directed fuzzing purposes. First, it results in
a significant amount of noise. Even if we run a simple PHP
script containing a few lines of code, the interpreter would
execute a large number of instructions. Second, instrumenting
the interpreter collects execution traces for the interpreter
but leaves the fuzzer unaware of the actual execution flow
of the web application’s code. When performing directed
fuzzing, the fuzzer requires accurate distance feedback from
the target application, not the interpreter.
Challenge 3: Addressing Dynamic Natures of Interpreted
Languages. Directed fuzzing typically requires preparatory
work based on static analysis. For instance, tools utilizing a
distance metric need to initially calculate and assign distances
to basic blocks based on the control flow of the target
application [23, 26]. During dynamic testing, they collect
distance feedback and conduct power scheduling, prioritizing

1 <?php

2 class ClassA {

3 public static function foo($action, $query) {

4 $attempt = 0;

5 while (!validate($query) && $attempt < 3) {
6 $query = sanitize($query);

7 $attempt++;

8 }

9 if ($action === ’lookup’)
10 benign_func($query);

11 else if ($action === ’edit’)
12 vuln_func($query);

13 ...

14 }

15 }

16
17 class ClassB {

18 public function foo($action, $query) {

19 if ($action === ’edit’)
20 if ($_SERVER[’STATUS’] === ’LOGGED_IN’)
21 vuln_func($query);

22 ...

23 }

24 }

25
26 $action = $_REQUEST[’a’] ?? ’defaultAction’;

27 $query = $_REQUEST[’q’] ?? ’defaultQuery’;

28
29 ClassA::foo($action, $query);

30 ...

31 $cName = ’ClassB’;

32 $mName = ’foo’;

33 (new $cName())->$mName($action, $query);

Listing 1: An example server-side PHP script contains both static
and dynamic method calls.

in seeds that are closer to the target. However, static analysis
tools often struggle to effectively model dynamic features
of interpreted languages like PHP. Inaccurate modeling of
dynamic features by static analysis tools can lead to imprecise
or erroneous distance calculations.

We provide an example in Listing 1 based on common
practices in real-world PHP applications to better illustrate
this challenge. There are two main concerns: 1) Some static
analysis tools designed for PHP use method names for match-
ing and constructing call edges [6, 10]. In scenarios where
the target application contains multiple classes with methods
sharing the same name, e.g., foo() in Listing 1, these tools
fail to construct an accurate call graph (CG). In this context,
some paths can hardly be accurately identified. However,
these overlooked paths can be reachable to the target lo-
cation. In the example, we can only identify the execution
path $ClassA::foo() using these static analysis tools, but
remain unaware of the second path $ClassB->foo(), even
if the second path can trigger the vulnerability more easily.
2) The code dynamically invokes methods based on variable
values ($cName and $mName), making it challenging for static
analysis tools to accurately infer all possible execution paths.
This feature is also known as variable function calls, which
are common in PHP applications. For example, current static
analysis tools cannot derive the call edge from line 33 to
line 18. When attempting to calculate distances, the results
can be imprecise or even erroneous.

Entry URL
Identification

Input Corpus
Construction

Distance
Calculation

Block Distance
Supplementation

Potential
Vulnerabilities

Source
Code

Parameter-Sensitive

Distance-Guided

Directed Fuzzing

Web Server

Vulnerability
Validator Augmented Interpreter

Block
Distances

Tailored Mutators

Static Analysis

Validation
Reports

Input Corpus

Selective Dynamic
Instrumentation

Dependent Params

Parameter Keys

Potential Values

Entry
URLs

Figure 1: Overall architecture of PREDATOR. Seven additional components are introduced. The blue components are essential for enabling
directed fuzzing, while the green components enhance its performance.

4. PREDATOR

In this section, we present PREDATOR, a directed fuzzing
tool specifically designed for detecting vulnerabilities in web
applications and addressing the aforementioned challenges.

4.1. Architecture Overview

The overall architecture of PREDATOR is illustrated
in Figure 1. PREDATOR primarily consists of two stages: the
static analysis stage and the directed fuzzing stage. During
the static analysis stage, PREDATOR takes the source code
of the web applications and existing static analysis reports
that provide fuzzing targets as inputs. To enable directed
fuzzing, it analyzes the potential vulnerable targets reported,
identifies the entry URLs, constructs the input corpus, and
performs distance calculations. During the directed fuzzing
stage, PREDATOR utilizes selective dynamic instrumentation
to provide basic block-level distance feedback for choosing
promising seed inputs. It introduces two novel mechanisms
to augment the directed fuzzing process for web applica-
tions. First, it dynamically supplements the block distance
information, thereby enhancing the effectiveness of distance
feedback. Second, the mutation strategies based on distance
and parameters improve the efficiency of the exploration and
exploitation phases.

4.2. Static Analysis for Directed Web Fuzzing

We need to achieve three main tasks using static analysis
techniques. First, we analyze control dependencies to extract
entry URLs for the specified targets and compute block-
level distances. Second, we assess data dependencies to
construct the input corpus. This step involves identifying how
data flows through the application, which helps determine

which parameters are influential in reaching and testing
different code paths. By analyzing data dependencies, we
can create a targeted input corpus that effectively stimulates
diverse application behaviors during fuzzing. Third, to gather
distance feedback at runtime and leverage it for power
scheduling and seed selection, we need to develop a suitable
instrumentation mechanism.

4.2.1. Entry URL Identification. To narrow the search
scope, we statically identify the entry scripts and their
corresponding entry URLs essential for reaching the target
code locations. We perform a backward analysis, starting
from the target locations and tracing back to the entry scripts.

PHP’s inclusion mechanism alters the execution flow
by dynamically injecting additional scripts into the runtime
environment. Code in a script might be executed by other
scripts that include it through statements like require() and
include(). For a given target, an intuitive approach is to
consider all scripts that ultimately include the target’s script
as entry scripts. However, this approach is too coarse-grained
and considered impractical, as a script can be recursively
included by other scripts. It could result in a large number
of potential entry scripts, although many of them do not lead
to the target code location.

We propose to use call chain and script inclusion chain
analysis to determine which scripts receive user requests and
direct to the target code locations. This process leverages
the principle that if a target is in a function body, tracing the
call chain can pinpoint the entry functions that initiate the
execution. Essentially, a call chain provides a roadmap of
function calls, detailing each step from the entry functions to
the target. The script inclusion chain analysis then identifies
only the scripts that include the known entry scripts.
Call Chain Analysis. We trace the call chain backward
from the target to determine which scripts originally initiate
the control flow. We build a call graph by analyzing the

Algorithm 1: Input corpus construction.
1 Input : The target t
2 Output : A dictionary of request parameters DR, A

dictionary of dependent parameters DP
3 Init :DR = {}, DP = {}, BS = [], RP = [],

V = []
4 BS ← identify_BS(t)
5 foreach bs in BS do
6 RP ← identify_RP(bs)
7 DP ← DP ∪ {bs,RP}
8 foreach rp in RP do
9 V ← extract_values(rp)

10 DR ← DR ∪ {rp, V }
11 end
12 end

inter-procedural control flow of the application to assist in
identifying the entry scripts. Each function along the path
possesses zero, one, or multiple call edges linking it to its
call sites. We meticulously track these call edges to pinpoint
the entry functions and record the scripts in which they are
invoked. These scripts are then marked as entry scripts. If a
target is not within a function body, we consider the scripts
containing the target as entry scripts.
Script Inclusion Chain Analysis. We assess the script
inclusion chain to identify which scripts include the entry
scripts, consequently designating those as entry scripts as
well. Then, we convert the file system paths of the entry
scripts into entry URLs. They are then fed into the fuzzer
to indicate the scripts responsible for processing test cases.

4.2.2. Targeted Input Corpus Construction. An targeted
input corpus fosters the generation and mutation of test cases
to reach the target code locations effectively. We conduct
an inter-procedural backward data-flow analysis to identify
critical request parameters that may influence the execution
paths (i.e., control flow) of the target application. The input
corpus comprises request parameter keys along with potential
values that can be assigned to them, enabling the fuzzer to
generate test cases effectively. Furthermore, we mark the
parameters that affect the condition expression of a branch
statement as its dependent parameters. These dependent
parameters guide the mutation mechanism, which will be
detailed in §4.3.2.

The simplified workflow is shown in Algorithm 1. Specif-
ically, we first identify all branch statements (BS) along the
control flow paths that extend from the entry scripts to the
specified target. For each branch statement in BS, we extract
all request parameters into RP and add the ones that influence
the condition expressions to the dictionary DP by tracing the
data-flow path backward. We then analyze the AST nodes
along the path to extract all possible values of the request
parameters and store them in V, specifically extracting all
relevant right-hand values from assignments, conditional
statements, etc. Finally, we append all these possible values
together with the request parameters into the dictionary DR.
Take the code in Listing 1 as an example. The server-side

script chooses which function to call based on the value of
$action. We identify that $a is the dependent parameter
influencing the value of $action in the branch statements
on lines 9, 11, and 19. We then extract all potential values
of $a, which include lookup, edit, and defaultAction.

4.2.3. Selective Dynamic Instrumentation. Inspired by Se-
lectFuzz [26], we propose to instrument only path-divergent
basic block, which is the last intersection block of a
reachable path and an unreachable one to the target. To
achieve this, PREDATOR needs to perform basic block-level
instrumentation. As discussed in §3, employing traditional in-
strumentation techniques is impractical. Instead, PREDATOR
augments the PHP interpreter to dynamically instrument only
a small group of specific opcodes, as shown in Table 1. This
process is transparent to the target application and does not
require any modification to the source code. It contains three
categories of opcodes, i.e., conditional and unconditional
jumps, function calls, and include or eval statements. These
specific opcodes represent the starting point of a basic block.
By instrumenting these opcodes, PREDATOR can provide
precise and efficient monitoring of the execution flow.
Jumps. PREDATOR detects the control-flow transfer caused
by either a conditional or unconditional jump. At this point,
the execution stream is at a branch statement, which is the
starting position of a basic block. PREDATOR checks the
file name and starting line number of this basic block to
determine if it is a path-divergent basic block. It updates the
input distance of the current test case if the block distance
is shorter than the current input distance.
Function Calls. When executing a function call opcode,
PREDATOR detects the control flow transfer. The process of
handling distance information is similar to that used for jump
opcodes. Additionally, PREDATOR records the filename and
line number of the call sites to dynamically update imprecise
block distances, which will be detailed in §4.3.1.
Include or Eval Statements. Executing include or eval
statements can significantly alter the control flow of a

TABLE 1: Selected opcodes for instrumentation.

Opcode Description

ZEND_JMP Unconditional jump

ZEND_JMPZ Jump if zero

ZEND_JMPNZ Jump if not zero

ZEND_JMPZNZ Jump if zero, else to another address

ZEND_JMPZ_EX Jump if zero with extra check

ZEND_JMPNZ_EX Jump if not zero with extra check

ZEND_DO_FCALL Execute function call

ZEND_DO_ICALL Execute indirect call

ZEND_DO_UCALL Execute unresolved call

ZEND_DO_FCALL_BY_NAME Execute function call by name

ZEND_CALL_TRAMPOLINE Call trampoline

ZEND_FAST_CALL Fast call used for user-defined functions

ZEND_INCLUDE_OR_EVAL Execute include or eval statements

9: if ()

10: benign_func() 11: else if ()

12/21: vuln_func()13: …

19: if ()

22: …1 inf.inf.

29: ClassA::foo() 33: $cName->$mName

Main()

inf. 2

44

8 inf.

20: if () 2

Figure 2: The iCFG of the example script, with red numbers
representing the block distance to the target vuln_func(), and the
red dashed directed line indicating paths that cannot be recognized
by static analysis tools.

PHP script, as it introduces new code paths and potential
function calls that are not present or known in static analysis.
Additionally, the included or evaluated code can contain
any number of function calls, conditional statements, or
even additional include or eval statements. PREDATOR treats
include as a jump and eval as a function call.

If we set line 12 in Listing 1 as the target, PREDATOR
will instrument lines 9, 11, and 12, as they contain the se-
lected opcodes and are path-divergent blocks. The simplified
bytecode of ClassA can be found in Listing 2 in the appendix.

When calculating block distances for PHP applications,
the distance can be inaccurate without executing the scripts.
Figure 2 illustrates this issue. In this example, vuln_func()
is the target, and the red numbers indicate the block distance
to the target, which is calculated using SelectFuzz’s block
distance calculation algorithm. This algorithm works on the
inter-procedural control-flow graph (iCFG), however, there
are paths within PHP applications that static analysis tools
cannot identify. We observed that the path represented by
the red dashed directed line in the figure, from line 33
to line 19, is undetectable by static analysis tools. This
leads to an inability to determine the distance between the
basic block at line 33 and the target, resulting in the fuzzer
considering it an unreachable block. When an input causes
the application to execute line 33, the fuzzer does not add
this input to the queue because it does not perceive the input
as reaching a new or closer basic block. Then, the likelihood
of executing the paths represented by all the red arrowed
lines will decrease due to the wrong action, thereby severely
affecting the effectiveness and efficiency of executing target
code and triggering vulnerabilities. We will detail the solution
to this issue in §4.3.1.

4.3. Tailored Directed Fuzzing Techniques

We develop new directed web fuzzing techniques to tailor
towards the specific dynamic features of web applications as
they render the fuzzing process inefficient. These techniques

encompass block distance supplementation at runtime and
tailored mutation strategies. Block distance supplementa-
tion assists in updating imprecise block distances during
the fuzzing process, while tailored mutation strategies are
designed to improve the mutation effectiveness.

4.3.1. Block Distance Supplementation. Inaccurate static
analysis results caused by variable function calls can be
supplemented during dynamic testing. PREDATOR can dy-
namically identify paths that were not recognized during the
static analysis phase and update the block distances accord-
ingly. The simplified workflow is shown in Algorithm 2.

PREDATOR places a sentinel at the beginning of each
function. When executing a variable function, PREDATOR
checks whether the path from the call site to the callee already
exists. If not, PREDATOR records this path and calculates
the block distance for the call site. Note that it is impractical
to recalculate all the distances every time a new call edge
is identified. Thus, we make a trade-off between the time
overhead incurred by updating distances and the accuracy
during the process of distance update. PREDATOR sets the
block distance of the call site as a constant multiple of the
block distance of the callee, where the constant is empirically
set to 2. It continuously adopts this approach during the
fuzzing process. Following this, the distance information
dynamically updated allows the fuzzer to more accurately
identify the distance between the currently executed basic
block and the target, thereby more effectively guiding the
fuzzing process. In §4.2.3, we present a simple example
where the performance of the fuzzer is impacted due to a
path not being identified, leading to some promising test
cases not being added to the seed queue. By using this
supplementation method at runtime, the path represented by
the red dashed directed line in Figure 2 is identified, and the
block distance of line 33 is updated with 8.

4.3.2. Tailored Input Mutation Strategies. Since existing
mutation strategies designed for native programs do not
guarantee effectiveness when testing web applications, we
present new ones specifically tailored for web applications,
namely dependent parameter-sensitive mutation and distance-
guided probabilistic mutation.

Algorithm 2: Block distance supplementation.
1 Input : A list of functions F , Distance dictionary D
2 Output : Updated distance dictionary D′

3 Init : Insert a sentinel at the start of each function in F
4 D′ ← D
5 foreach func in F do
6 if sentinel_detected(callSite, func) then
7 if !path_exists(callSite, func) then
8 record_path(callSite, func)
9 D′ ← D′ ∪ {func : Const×D′[func]}

10 end
11 end
12 end

Dependent Parameter-Sensitive Mutation. PREDATOR
utilizes the dependent parameters identified in §4.2.2 to guide
the fuzzer in targeted mutations, thereby quickly limiting
the search space of the exploration stage. Angora [24]
introduced a similar technique by performing byte-level
taint analysis on user inputs and then mutating these bytes.
For web applications, we need to manipulate parameter
keys and values by conducting lightweight parameter-to-
condition analysis. At directed fuzzing stage, PREDATOR
first logs the closest basic block to the target during the
web application’s execution. It then mutates the dependent
parameters of this basic block to approach the target via the
block. Specifically, for any branch statement, PREDATOR
identify several dependent parameters during static data-flow
analysis. For the closest branch statement after a round of
fuzzing, PREDATOR will utilize the dependent parameters as
candidate parameter keys for the next round to mutate. By
this means, PREDATOR can guide the fuzzer to fulfill the
specific conditions and reach the target more effectively.
Distance-Guided Probabilistic Mutation. We propose a
distance-guided probabilistic mutation method that combines
the advantages of both dictionary-based methods [16] and
byte stream-based mutation methods [20]. Dictionary-based
mutation methods can help the exploration stage by changing
the decision of a branch statement. However, for the exploita-
tion stage, these methods may be less effective. Specifically,
when utilizing error-based bug oracles, triggering a vulnera-
bility may require a specific attack string, such as a single
quote for SQL injection.

The key idea of our approach is to mainly adopt
dictionary-based mutation methods when the current input
distance is relatively large, and byte stream-based mutation
methods when the distance gets smaller. PREDATOR uses
Formula 1 to calculate the probability to use the byte stream-
based mutation methods, where Dcur is the input distance
in the current round, Dmax and Dmin are the maximum and
minimum input distances in the previous rounds, respectively.
The probability is higher when the current distance is smaller,
and lower when the current distance is larger. We set the
maximum probability to 90% based on empirical observation,
meaning that the byte stream-based mutation methods will be
applied with a 90% probability when the current distance is 1.
PREDATOR leverages the maximum and minimum distances
to modulate the rate of change in the probability function,
instead of directly employing a linear function. Specifically,
it mostly chooses byte stream-based mutation methods when
the current distance is sufficiently far from the maximum
distance and sufficiently close to the minimum distance.

Pb(Dcur, Dmax, Dmin) =

{
0 if Dcur < 1

0.9 · e−
(

Dmin
Dmax

)
(Dcur−1)2 if Dcur ≥ 1

(1)

The three variables, Dcur, Dmax, and Dmin, can exhibit
only three possible states in practice. Initially, all are set to
-1, indicating that no basic blocks have been executed. At
runtime, all three values are greater than or equal to 1 when
at least one path-divergent basic block has been executed,
and the current run also encounters such blocks. If Dcur is -1

while Dmax and Dmin are no less than 1, it indicates that
basic blocks with distance information have been executed
in previous runs, but no such blocks were encountered in the
current execution. Hence, this function remains valid across
all scenarios.

5. Implementation

We implement a prototype of PREDATOR comprising
around 2,300 lines of code, which includes 1,500 lines of
C code for directed fuzzing, and 800 lines of Python code
for lightweight static analysis. The main components of
PREDATOR is built atop Witcher [16], a grey-box coverage-
guided fuzzer for web applications. We could implement
PREDATOR based on Atropos, but its code is not available at
the time of writing. The static analysis part is realized atop
PHPJoern [10] and TChecker [6]. Next, we discuss several
important implementation details.
Static Analysis. To identify potential targets for dynamic
validation, we utilize TChecker [6]. It is a context-sensitive
inter-procedural static analysis tool to detect taint-style
vulnerabilities in PHP applications. We use the nodes and
edges generated by PHPJoern [10] to construct the abstract
syntax tree (AST) and corresponding graphs to perform
lightweight control- and data-flow analysis.
Selective Dynamic Instrumentation. We modify the
PHP interpreter to enable directed fuzzing. Inspired by
Witcher [16], we utilize the VM_TRACE() macro, which is
introduced in the PHP interpreter from version 7.3. This
macro enables detailed tracing of the execution of opcodes
within the PHP virtual machine. We modify the macro to
report the distance of the current basic block when control-
flow transferring opcodes are executed. When executing a
control-flow transferring opcode, the PHP interpreter searches
if the line number of the opcode and the file name of the
current script exist in the recorded block distance information.
If the current test case reaches a closer block, the interpreter
updates its input distance by modifying the shared memory.
After the execution of the test case, the fuzzer reads the
distance and saves the test case if the distance is the shortest
so far. We store the block distance information in the file
system, which is to permanently record the distances when
block distance supplementation happens at runtime. When
testing the same target, we load from the file system to avoid
re-updating the block distance information.
XSS Detection. We further implement a simple re-
flected XSS detector [14, 36] working with PREDATOR, as
Witcher [16] is able to identify only SQL injection and com-
mand injection vulnerabilities. PREDATOR injects a crafted
payload into the target web application and checks whether
the payload is reflected in the response. Technically, we
could employ a JavaScript engine to execute the response for
more accurate detection, similar to what Black Widow [12]
does. However, doing so would significantly impair the
efficiency of the dynamic validation phase, especially for
triggering other types of vulnerabilities. We do not emphasize
this component as our contribution and we only aim to

demonstrate the potential to detect taint-style vulnerabilities
using PREDATOR.

6. Evaluation

In this section, we answer the following research ques-
tions to evaluate PREDATOR:

• RQ1. How does PREDATOR compare with existing
tools in terms of effectiveness and efficiency in repro-
ducing known vulnerabilities?

• RQ2. How does each component of PREDATOR con-
tribute to its performance?

• RQ3. How capable is PREDATOR in validating static
analysis reports?

• RQ4. How well does PREDATOR perform in discover-
ing new vulnerabilities in real-world applications?

All experiments are conducted in Docker running on a
64-bit Debian server equipped with 4 × Intel Xeon Platinum
8160 processors.

6.1. Known Vulnerability Reproduction (RQ1)

Evaluation Dataset. We select applications evaluated in
prior studies [6, 12, 15, 16, 30] as our dataset for evaluation.
These encompass 3 synthetic test suites and 11 real-world
applications, comprising around 46K files and 2M LoC in
total. They collectively contain a total of 51 SQL injection
(SQLi), 8 command injection (CMDi), and 26 reflected cross-
site scripting (XSS) vulnerabilities. We manually collect
known vulnerabilities from the CVE database [37] in a
best effort manner, yet we acknowledge the possibility of
omissions. We exclude applications that only run on PHP 5,
which has long been obsolete and is no longer supported by
the PHP community. For these applications, we believe that
the benefit of detecting their vulnerabilities is not significant.

To the best of our knowledge, no existing fuzzer encom-
passes a vulnerability scope identical to that of PREDATOR.
Therefore, we compare PREDATOR with various state-of-
the-art fuzzers for different types of vulnerabilities, includ-
ing Witcher [16] and Atropos [18] for SQLi and CMDi
vulnerabilities, Cefuzz [30] for CMDi vulnerabilities, and
WebFuzz [15] for XSS vulnerabilities. To better compare the
performance of PREDATOR with Witcher, we add the XSS
detector to Witcher and denote it as Witcher+. The source
code of Atropos—a concurrent work—is not available at
the time of writing. Cefuzz is closed-source and we are not
able to run it for a direct comparison. We thus borrow the
evaluation results presented in the papers [18, 30] of Atropos
and Cefuzz for a comparison. We manually check the testing
results generated by each tool to confirm if they are true
positives.

6.1.1. Effectiveness. We first evaluate the effectiveness of
PREDATOR in reproducing known vulnerabilities and com-
pare it with other fuzzers. For each application, we search and
select the reported code locations of all known vulnerabilities

as targets for PREDATOR. We run the crawler of Witcher
to collect URLs of the target vulnerabilities for Witcher
and Witcher+. We adopt the settings recommended in the
paper [16], providing the crawler with valid credentials and
run it for four hours. For WebFuzz, we manually browse the
applications to collect URLs and ensure it can successfully
access all pages and forms related to the target vulnerabilities.
We then exclude irrelevant URLs that do not lead to the
target vulnerable locations and assign an equal time budget
for each of the remaining URLs. This measure allows all
tools to focus on testing target vulnerabilities instead of
exploring unrelated execution paths, thereby ensuring a fair
comparison. If we consider a scenario where no irrelevant
URLs are excluded and an equal time budget is allocated
for each URL, several challenges would arise. A prolonged
budget may result in excessive time spent on irrelevant URLs,
while a budget that is too short may prevent thorough testing
of vulnerability-related URLs. If we set the same total time
budget for each tool for analyzing one application, the actual
testing duration on vulnerability-related URLs may vary
significantly across different tools. In both scenarios, these
discrepancies would negatively impact the fairness of the
comparison.
Results. Table 2 summarizes the results on synthetic
test suites and Table 3 presents the results on real-world
applications. Combining two datasets, PREDATOR effectively
identified 32 SQL injection vulnerabilities, 5 command
injection vulnerabilities, and 12 XSS vulnerabilities across
all 17 applications. Witcher successfully triggered 16 SQLi
vulnerabilities and 1 CMDi vulnerability, respectively. Ac-
cording to the original papers, Atropos successfully triggered
21 SQLi vulnerabilities and 6 CMDi vulnerabilities in the
synthetic test suites [18]; Cefuzz triggered all 5 CMDi
vulnerabilities in the synthetic test suites [30]. WebFuzz suc-
cessfully identified 9 XSS vulnerabilities, whereas Witcher+
only detected 2. On real-world applications, PREDATOR
detected all vulnerabilities that other tools could detect, and
additionally discovered 9 vulnerabilities that other tools failed
to detect.
Comparison with Witcher. The performance improvements
of PREDATOR primarily result from the entry URL identi-
fication and targeted input corpus construction techniques.
For instance, we observed that Witcher struggled to collect
effective entry URLs for some applications, notably bWAPP,
OpenEMR, and rConfig. We conducted additional crawling
for several applications using Witcher’s crawler. However,
after the crawler stopped or reached the time budget, we
observed that the results never included an effective entry
URL for certain vulnerabilities. This is consistent with the
findings in the paper [16].
Comparison with Atropos. The performances of PREDATOR
and Atropos regarding bWAPP and XVWA show marginal
differences. Discrepancy is primarily observed when eval-
uating DVWA. This is due to the inherent limitation of
Witcher on which PREDATOR depends—it cannot carry hid-
den random CSRF tokens, rendering PREDATOR ineffective
in testing DVWA. In contrast, Atropos operates on a snapshot-

TABLE 2: The evaluation results on synthetic test suites. We list the total number of vulnerabilities by type, in the format of
SQLi + CMDi + XSS. As the source code is not available at the time of writing, we borrow the detection results from the papers of
Atropos and Cefuzz. "-" denotes that no detection results are available.

Application SQLi CMDi XSS

ID Name Vulnerability PREDATOR Witcher Atropos PREDATOR Witcher Atropos Cefuzz PREDATOR WebFuzz Witcher+

1 bWAPP 17 + 2 + 12 11 0 13 2 0 2 2 7 6 0

2 DVWA 6 + 3 + 3 0 0 6 0 0 3 3 0 0 0

3 XVWA 2 + 1 + 1 2 2 2 1 1 1 - 1 1 1

Total 25 + 6 + 16 13 2 21 3 1 6 5 8 7 1

TABLE 3: The evaluation results on real-world applications. We list the total number of vulnerabilities by type, in the format of
SQLi + CMDi + XSS. †We remove the hidden tokens in WeBid for a comparison between PREDATOR and Witcher.

Application SQLi CMDi XSS

ID Name Version Vulnerability PREDATOR Witcher PREDATOR Witcher PREDATOR WebFuzz Witcher+

4 Login Mgmt. 2.1 1 + 0 + 0 1 1 0 0 0 0 0

5 Hosp. Mgmt. 4.0 9 + 0 + 1 9 8 0 0 1 0 0

6 Doctor Appt. 1.0 1 + 0 + 0 1 1 0 0 0 0 0

7 Piwigo 13.6.0 2 + 0 + 0 0 0 0 0 0 0 0

8 rConfig 3.9.2 1 + 2 + 0 1 0 2 0 0 0 0

9 OpenEMR 5.0.1.7 5 + 0 + 5 3 1 0 0 2 1 0

10 WeBid† 1.2.2 1 + 0 + 2 1 0 0 0 1 1 1

11 Joomla 3.7.0 1 + 0 + 2 0 0 0 0 0 0 0

12 WebChess 0.9 2 + 0 + 0 2 2 0 0 0 0 0

13 WordPress 6.0 2 + 0 + 0 0 0 0 0 0 0 0

14 ECShop 4.1.5 1 + 0 + 0 1 1 0 0 0 0 0

Total 26 + 2 + 10 19 14 2 0 4 2 1

based approach, making the random tokens deterministic
during fuzzing [18]. We cite Atropos’ detection results in the
best-case scenario as the ground truths used in the evaluation
of Atropos and PREDATOR are not identical. When evaluating
PREDATOR on reproducing known vulnerabilities, we did
not count any true-positive vulnerabilities outside the ground
truth, whereas Atropos did. The current testing results for
Atropos are limited to three synthetic test suites, which
hinders our ability to perform a comprehensive comparison
on real-world applications.
Comparison with WebFuzz. The performance of
PREDATOR is slightly better than that of WebFuzz. We
noticed that WebFuzz occasionally got stuck on certain
pages, preventing further progress. For instance, when testing
Hospital Management System, despite providing valid login
credentials, WebFuzz consistently attempted to visit inacces-
sible pages. This likely represents a design or implementation
flaw, leading it to waste considerable time exploring irrelevant
paths. When testing other applications, its performance
was satisfactory yet remained marginally inferior to that
of PREDATOR.
False Negatives. We analyze the reasons behind the
false negatives. In bWAPP, 6 SQLi vulnerabilities were not
detected, 3 of which were due to the lack of oracle for sqlite.
This could be easily addressed by detecting the correspond-
ing error feedback messages. However, we refrained from

improving it to maintain fairness in comparison with Witcher.
This is one of the reasons why PREDATOR underperformed
Atropos in detecting SQLi vulnerabilities in bWAPP. The
remaining 3 vulnerabilities could not be triggered by our
current prototype due to the presence of CAPTCHAs and the
requirement of specific User Agent (UA) header values. For
a fair comparison with Atropos, we did not remove hidden
CSRF tokens in DVWA. As Witcher and PREDATOR cannot
handle hidden tokens, they failed to trigger any vulnerabilities
in DVWA. The vulnerabilities undetected in OpenEMR could
be identified by concurrently fuzzing with multiple cores or
increasing the time budget. Moreover, we discovered that
PREDATOR was unable to detect any vulnerabilities within
WordPress, Piwigo and Joomla due to the failure of entry
URL identification. For example, they dynamically includes
server-side files based on the values of query strings, which
are impractical to identify using static analysis methods.
During the XSS vulnerability detection, we noted that the
absence of injected payloads in the source code of some
pages prevented the matching of the attack string. As a
result, PREDATOR failed to detect the vulnerabilities. This
is an implementation limitation of the matching-based XSS
detection method.

False Positives. All 6 false positives were reported during
the XSS vulnerability detection. This is possibly due to the
high false-positive rate of the string matching-based XSS

detection method. This risk of false positives arises whenever
an application outputs user input on a page. Addressing this
issue could involve utilizing a JavaScript engine to render
the responses.

6.1.2. Efficiency. We further compare PREDATOR with
Witcher on the efficiency. The comparison was exclusively
made with Witcher because PREDATOR is implemented atop
Witcher, and it significantly differs from the other tools.
Additionally, Cefuzz neither has available source code nor an
evaluation of time to exposure in its paper, thus we are unable
to compare PREDATOR with it. While we acknowledge that
comparing PREDATOR, a directed fuzzer, to Witcher may
seem unfair, it is important to note that our intention is not
to criticize Witcher. Rather, our goal is to emphasize the
advantages of directed fuzzing for web applications. We
select vulnerabilities in real-world applications that could be
successfully triggered and allocate a 24-hour time budget
for each one and run the experiment ten times. Moreover,
to enhance fairness as much as possible, we provide both
tools with the same input corpus and entry URLs, and set
the initial seeds to be empty.
Results. The average time to exposure (µTTE) is shown
in Table 4. We used the Mann-Whitney U test to assess
the statistical significance of our experimental results. In
22 out of 25 cases, the results are statistically significant,
with p-values less than 0.05. In the other 3 cases, both tools
either failed to detect the vulnerability, resulting in a 24-
hour TTE, or they triggered the vulnerabilities within similar
timeframes in multiple trials, yielding higher p-values.

PREDATOR outperformed Witcher in 21 out of 25 cases
(highlighted in bold in the table), with p-values less than 0.05.
PREDATOR demonstrated shorter µTTE and successfully
triggered more vulnerabilities in ten attempts. Specifically,
both PREDATOR and Witcher triggered the vulnerability
CVE-2020-29283 in all ten attempts, with PREDATOR
achieving a µTTE that was 43.8 times shorter. We observed
that Witcher’s µTTE is marginally lower when detecting
CVE-2020-15713. This can be attributed to the simplicity of
the target vulnerability. Both tools triggered it in seconds, but
the throughput of PREDATOR was relatively lower. Note that
in this experiment we provided Witcher with the entry URLs
and input corpus obtained by PREDATOR. Consequently,
Witcher triggered some vulnerabilities that could not be
identified when using its crawler in Table 3. However, the
input corpus, derived from analyzing the target script, yielded
a greater number of potential parameters than those obtained
using a crawler, thereby expanding the search space. Witcher
was unable to efficiently identify which parameters could
be used to reach the target locations. In contrast, due to
PREDATOR’s directed fuzzing mechanism, it can quickly
identify promising parameter keys and values.

6.1.3. Scalability. We evaluate the scalability of PREDATOR
by measuring the static analysis time and the throughput of
directed fuzzing. The static analysis time consists of two
parts: the time spent on the distance calculation and the
time spent on identifying entry URLs and constructing the

TABLE 4: The results of average time to exposure (µTTE)
comparison. Each application is denoted by an ID, with the specific
correspondence available in Table 3. T.O. indicates that in all ten
attempts, the vulnerability is not triggered within the time budget.
In other cases, a timeout results in a time to exposure of 24 hours.
Runs denotes the number of successfully triggered attempts. We
mark items where PREDATOR shows superior performance and the
p-value is below 0.05 in bold.

ID # CVE-ID
PREDATOR Witcher

p
Runs µTTE Runs µTTE

4 2020-25952 10/10 0.15 h 0/10 T.O. 0.000

5

2020-22168 10/10 0.14 h 3/10 17.53 h 0.000

2020-22169 10/10 0.32 h 2/10 19.45 h 0.001

2020-22165 10/10 0.71 h 1/10 19.38 h 0.001

2020-22174 9/10 4.97 h 0/10 T.O. 0.000

2020-22173 10/10 0.24 h 3/10 17.68 h 0.001

2020-22172 10/10 0.08 h 7/10 7.36 h 0.045

2020-22166 9/10 2.69 h 5/10 16.94 h 0.001

2020-22171 9/10 2.75 h 4/10 18.70 h 0.008

2020-22164 10/10 0.04 h 8/10 2.69 h 0.000

2021-39411 10/10 0.02 h 0/10 T.O. 0.000

6 2020-29283 10/10 0.05 h 10/10 2.19 h 0.000

8

2019-16662 9/10 2.43 h 8/10 9.61 h 0.073

2019-16663 7/10 7.28 h 2/10 20.23 h 0.009

2020-15713 10/10 0.05 h 10/10 0.01 h 0.000

9

2019-14529 8/10 7.67 h 8/10 18.20 h 0.037

2019-16404 9/10 10.52 h 1/10 21.72 h 0.003

2018-17179 9/10 5.03 h 9/10 5.62 h 0.257

2023-2949 10/10 0.04 h 0/10 T.O. 0.000

2022-4502 10/10 0.05 h 0/10 T.O. 0.000

10
2018-1000867 10/10 6.33 h 10/10 6.82 h 0.372

2018-1000868 10/10 0.02 h 1/10 21.81 h 0.000

12
2023-22959 10/10 0.23 h 10/10 0.88 h 0.001

2019-20896 10/10 0.34 h 10/10 0.95 h 0.031

14 2023-5293 10/10 0.01 h 10/10 0.03 h 0.005

input corpus. We compare PREDATOR with Witcher on their
throughputs to examine the impact of selective dynamic
instrumentation. We run each tool for one hour on every
entry URL of each application and take the average as the
throughput, measured in requests per second (req/s). The
dataset contains 10 web applications, excluding those where
neither PREDATOR nor Witcher identified any vulnerabilities.

Results. The results are shown in Table 5. The distance
calculation time is negligible for most applications, except
for OpenEMR, which has a large codebase. The cost for
identifying entry URLs and constructing the input corpus is
also low, except for OpenEMR and ECShop. The time spent
on static analysis is typically less than 1 hour, demonstrating
that it is both fast and scalable. We analyze the relative
difference in fuzzing throughput between PREDATOR and
Witcher. PREDATOR’s throughput relative to Witcher ranges

TABLE 5: The results of static analysis time and fuzzing through-
put.

Application
Static Analysis (mins) Throughput (req/s)

Distance URL & Input Total Witcher PREDATOR Difference

bWAPP 0.31 0.09 0.40 140.93 101.64 ↓ 27.88%

XVWA 0.21 0.02 0.23 106.29 132.92 ↑ 25.05%

Login Mgmt. 0.01 0.01 0.02 90.14 97.50 ↑ 8.17%

Hosp. Mgmt. 0.12 0.01 0.13 73.64 83.58 ↑ 13.50%

Doctor Appt. 0.01 0.01 0.02 100.37 95.03 ↓ 5.32%

rConfig 0.78 0.10 0.88 58.68 37.45 ↓ 36.18%

OpenEMR 33.71 15.64 49.35 5.04 4.59 ↓ 8.93%

WeBid 2.83 0.27 3.10 115.27 146.41 ↑ 27.01%

WebChess 0.18 0.07 0.25 64.97 60.17 ↓ 7.39%

ECShop 1.73 10.52 12.25 28.58 41.45 ↑ 45.03%

Average 3.99 2.67 6.66 78.39 80.07 ↑ 2.14%

from 63.82% to 145.03%, where PREDATOR performs better
in half cases. Overall, PREDATOR achieves an average
throughput of 80.07 req/s, while Witcher achieves 78.39 req/s,
differing by 2.14%. This indicates that the additional over-
head introduced by our selective dynamic instrumentation is
low in practice.

6.2. Ablation Study (RQ2)

We assess the role each component of PREDATOR
plays in its overall performance. We start with a baseline
version of PREDATOR, disabling all proposed techniques
(PREDATORb), and then sequentially add each technique
to evaluate its impact. We denote each configuration as
PREDATORe, PREDATORed, PREDATOReds, PREDATORedsp,
and PREDATOR, representing the gradual inclusion of the
static analysis method for entry URL identification and
targeted input corpus construction, the selective dynamic
instrumentation, the block distance supplementation, the
distance-guided probabilistic mutation, and the dependent
parameter-sensitive mutation, respectively. We achieved dif-
ferent configurations by modifying and recompiling the
relevant components of PREDATOR. We selected the SQLi
and CMDi vulnerabilities successfully triggered in bWAPP
as the dataset. This is primarily for two reasons. Firstly,
bWAPP contains the most known vulnerabilities among all
applications. Secondly, there is only one entry URL for each
vulnerability, which simplifies the experimental setup. We set
the time budget to 1 hour, which is sufficient according to our
observations in the vulnerability reproduction experiments,
and conduct 10 runs for each configuration.
Results. The results are shown in Figure 3. Different colored
bars represent the µTTE required by the corresponding
configuration. A timeout results in a time to exposure of
1 hour. We investigated the performance across 6 different
configurations. The baseline prototype PREDATORb used
Witcher’s crawler for extracting entry URLs and parameters.
However, it consistently failed to extract any valid entry
URL, thus was unable to trigger any vulnerabilities. With the
implementation of entry URL identification and targeted input
corpus construction, PREDATORe successfully detected 8 out
of the 13 vulnerabilities. In the remaining 5 cases it failed

to trigger vulnerabilities in all 10 runs. PREDATORed further
improved the performance due to the addition of selective
dynamic instrumentation, notably in cases 1, 8, and 10. For
two cases 7 and 11, we observed an increase in µTTE after
enabling block distance supplementation in PREDATOReds,
attributable to its runtime overhead. The supplementation
incurs extra overhead as it involves tracking call sites with
unknown callee functions and determining whether the
callees can reach the target. PREDATORedsp managed to
reduce the time cost in most cases, as it mainly adopts
dictionary-based mutation methods in exploration stage and
byte stream-based mutation methods in exploitation stage.
Upon enabling the dependent parameter-sensitive mutation,
PREDATOR improves significantly in cases 6, 11, and 13.

6.3. Validating Static Analysis Reports (RQ3)

We further assess the capability of PREDATOR in validat-
ing static analysis reports. We use the set of vulnerabilities
reported by TChecker [6] as the ground truth, and then
perform automatic validation using PREDATOR. We set
the locations reported by TChecker as the targets. Some
applications evaluated by TChecker are excluded, and we
provide detailed explanations in Table 8 in the appendix.

Table 6 summarizes the number of vulnerabilities re-
ported by TChecker, validated by PREDATOR, and not
validated by PREDATOR. PREDATOR successfully validated
65 out of 84 vulnerabilities (77.38%) reported by TChecker.
False Negatives. We analyze the reasons behind the false
negatives. In Codiad, 5 targets are non-functional because
they rely on the official Marketplace, which has been offline
long ago. If we exclude the 5 targets in Codiad, the ratio
of validated vulnerabilities increases to 82.28%. WebChess
contains multiple vulnerabilities within the same function.
When the first vulnerability was encountered, a segmentation
fault signal was sent to AFL. AFL then believed that the
application just crashed, and did not test subsequent code
to validate the 3 remaining vulnerabilities. In WeBid, one
target requires a valid database name, which is difficult
for the fuzzer to generate randomly. In the case of Joomla,
PREDATOR could not extract the corresponding entry URLs.
Since PREDATOR detects only reflected XSS vulnerabilities

TABLE 6: The results of static analysis report validation. †The
stored XSS vulnerability in Collabtive is not supported by
PREDATOR.

Application Version TChecker Validated Failed

Codiad 2.8.4 33 27 6

WebChess 0.9 27 22 5

WeBid 1.2.2 18 15 3

Joomla 3.7.0 3 0 3

CPG 1.6.12 1 1 0

PHPLiteAdmin 1.9.8.2 1 0 1

Collabtive 3.1 1† 0 1

Total 84 65 19

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

A
ve

ra
ge

T
im

e
to

E
xp

os
u

re
(m

in
s)

Predatore
Predatored
Predatoreds
Predatoredsp

Predator

Figure 3: Results of the ablation study. As PREDATORb fails to extract any valid entry URLs using Witcher’s crawler, we exclude it from
this figure.

currently, the stored XSS vulnerability in Collabtive was not
triggered. The other 6 vulnerabilities that PREDATOR failed
to validate were not triggered within the time limit.

6.4. Discovering New Vulnerabilities (RQ4)

In this section, we showcase the capability of PREDATOR
to detect new vulnerabilities in real-world web applications.
We include 22 popular web applications from previous
work [6, 12, 15, 16, 38] and select the latest versions that
are compatible with PHP 7. We first analyze the applications
using TChecker, subsequently providing the potential vulner-
able targets to PREDATOR for automated dynamic validation.
We set the time budget to 24 hours for each application.
The dataset, static analysis reports, and results after dynamic
validation by PREDATOR are summarized in Table 7.

PREDATOR identified a total of 26 new vulnerabilities,
including 11 XSS and 15 SQLi vulnerabilities. PREDATOR
detects new vulnerabilities by validating the reports of static
analysis tools. Specifically, as a directed fuzzer, PREDATOR
sets the target locations based on the static analysis results. If
the target locations do contain vulnerabilities, PREDATOR can
trigger them automatically, thereby reducing the manual ef-
fort needed to validate the static analysis reports. PREDATOR
found no new vulnerabilities in applications such as Word-
Press, phpBB, and Joomla, as the potentially vulnerable
locations identified by TChecker did not contain any vulner-
abilities. This finding is consistent with the results presented
in the paper [6]. We also used Witcher to analyze the
applications with the same time budget, but it only detected
7 out of 26 vulnerabilities. We have responsibly reported
the vulnerabilities to the respective vendors. At the time of
writing, 7 XSS vulnerabilities have been acknowledged and
patched, 6 new CVE IDs (CVE-2024-404[47-52]) have
been assigned.

Our detection approach offers two key advantages. First,
we observed only 2 false positives for XSS during the
validation process, indicating that vulnerabilities confirmed
by PREDATOR generally do not require additional manual

TABLE 7: The results of automated validation for new vulnerabil-
ities.

Application Version # LoC SQLi CMDi XSS

HAXCMS 8.0.2 238,070 - - 1

PHPVibe 11.0.46 233,884 - - 6

Shopping System #a5f3b4e 7,073 15 - 4

No vulnerability
detected

OpenCart, ForkCMS, phpBB, SuiteCRM, osCommerce,

phpMyAdmin, Zen Cart, Inventory System, WordPress,

Piwigo, PHP Fusion, Rental Manager, Joomla, iCMS,

Silverstripe, OpenEMR, ECShop, rConfig, Xenforo

effort. This allows limited human resources to be focused
on auditing unconfirmed reports. Second, developers can
promptly patch vulnerabilities confirmed by PREDATOR,
saving time and reducing the potential damage of the
vulnerabilities compared to patching after manual auditing,
which may take weeks or even months.

We discovered that TChecker encountered errors when
analyzing certain applications, such as ForkCMS and Suite-
CRM. This limitation pertains to the static analysis tool used,
rather than to PREDATOR. Moreover, it is important to note
that the current XSS detector inherently has the potential for
false positives, which is a limitation due to implementation
issues. Developing more advanced detectors could overcome
this limitation.

7. Discussion

PREDATOR achieved good results in the evaluation, yet
there remains room for improvement. In this section, we
discuss some limitations and possible future work.
Performance of Static Analysis Tools. The effectiveness
of PREDATOR highly depends on the performance of the
static analysis tools. For reproducing known vulnerabilities,
these tools need to identify potential execution paths as
accurately as possible. This assists in analyzing the paths

that are likely to lead to the target locations and calculating
the block distances. The current tools are not perfect in this
regard, especially when the target application is complex
or contains new language syntax that the tools cannot
handle [6, 10]. Additionally, some PHP frameworks, such
as Laravel, may dynamically register HTTP URLs and their
handling functions to define URL entries, causing PREDATOR
to potentially miss these entry URLs.

The capability of PREDATOR to detect new vulnerabilities
relies heavily on the results of static analysis. PREDATOR
can dynamically validate the potential targets to reduce the
false positives, but the false negatives are still a problem.
Unfortunately, many vulnerable locations are not identified
by the current static analysis tools [9]. We observed that
TChecker failed to analyze some applications, possibly due
to the complexity of the applications or its inability to
model new PHP syntax. This is a common problem for
static analysis tools, which we leave for future work.

Directed Web Fuzzing. As a directed fuzzer, PREDATOR
guides the fuzzing process towards the target locations. It
requires preparatory work to identify the potential targets.
This is a language-specific task, thus we need to use a
specific static analysis tool for one language. As PHP is the
most popular server-side language for web development [5],
we chose PHP as the target language in our prototype. The
distance feedback mechanism is currently implemented in the
PHP interpreter, which could be extended to other interpreted
languages.

One distinguishing aspect of web fuzzing, compared to
other fuzzing domains, is the necessity to analyze the URLs
associated with the application’s different functionalities
and the structured parameters included in these URLs.
PREDATOR extracts URLs and builds input corpus from
source code through lightweight static analysis, differing
from the commonly employed crawling method. However, the
static analysis method cannot handle dynamically generated
URLs. One possible approach is to integrate static analysis
with a crawler. The results from the crawler can facilitate
the exploitation of easily accessible vulnerabilities, while
static analysis provides more detailed insights into exploring
deeper execution paths.

Bug Oracles. PREDATOR leverages Witcher’s customized
bug oracles to detect SQL injection and command injection
vulnerabilities. A reflected XSS detector is implemented to
demonstrate its potential to detect more types of vulnera-
bilities. However, there are limitations of the current bug
oracles. For example, the current SQL injection oracle only
supports MySQL and PostgreSQL, limiting its applicability
across diverse database environments. The XSS detector
introduces false positives. Additionally, PREDATOR currently
does not support a broader spectrum of vulnerabilities,
such as server-side request forgery (SSRF). This issue
could be addressed by extending the current bug oracles
or implementing PREDATOR upon other fuzzers capable of
detecting more types of vulnerabilities.

8. Related Work

Securing Web Applications. In recent years, many ap-
proaches have been proposed to secure web applications.
Static analysis methods [6, 7, 10, 11, 39–43] scrutinize the
source code of web applications to identify taint-style or
second-order vulnerabilities. Recent work typically based on
code property graph [6, 10] or abstract syntax tree [39, 40]
to model the source code. However, these tools often suffer
from potential high false positive rates.

Dynamic approaches [12–19, 30, 32, 33, 44, 45] are
more relevant to our work. Witcher [16] is a grey-box fuzzer
for web applications and the closest to our work. It uses
code coverage feedback to guide the fuzzing process and
customized bug oracles to detect SQL injection and command
injection vulnerabilities. It collects initial seed inputs and tar-
gets using a crawler to support up to 6 languages. PREDATOR
extends Witcher by introducing an static analysis stage to
identify potential targets and a distance feedback mechanism
to guide the directed fuzzing process. It only focuses on PHP
applications. The reasons are twofold: 1) PHP is the most
popular server-side languages for web development [5], and
2) PHP applications are more vulnerable to taint-style vulner-
abilities [6]. However, the techniques used in PREDATOR can
be easily extended to other languages. WebFuzz [15] uses
static instrumentation to collect code coverage feedback and
employs a crossover method to generate new test cases. It
significantly enlarges the source code of the target application.
PREDATOR does not require any modification to the target
application. BackREST [17] is a closed-source feedback-
driven fuzzer designed for testing RESTful APIs. It conducts
dynamic taint analysis during runtime to support the fuzzing
process. PREDATOR only conducts static analysis before the
fuzzing process to avoid introducing high runtime overhead.
At runtime, PREDATOR only collects distance feedback
and leverages the dependent parameters to improve the
mutation effectiveness. As a concurrent work, Atropos [18]
employs snapshot-based techniques and runtime inference
to detect eight types of vulnerabilities. Another recent work,
Phuzz [19], is a modular fuzzing framework for detecting
5 types of server-side and 2 types of client-side vulnerabilities.
PREDATOR, based on Witcher, only detects three kinds of
vulnerabilities. While developing more bug oracles is not our
primary research objective, it is possible to detect additional
types by migrating the approach of PREDATOR to any other
fuzzing tool.
Directed Fuzzing. There are sufficient directed fuzzing
tools for native programs [23–29] and kernels [46–48], yet
few for web applications [30]. Cefuzz [30] claims to be a
directed fuzzer for web applications. Yet its static instru-
mentation method introduces additional code and cannot
accurately evaluate the seeds when the application is complex.
Furthermore, Cefuzz is closed-source, and the evaluation
is limited to a small number of applications. It cannot
address the dynamic features of interpreted languages like
PHP, e.g., the variable function calls. PREDATOR bridges
the gap of the lack of efficient directed fuzzing tools for
web applications without altering the source code of the

target application. Additionally, PREDATOR introduces novel
methods to enhance directed fuzzing for web applications,
which encompass block distance supplementation, mutation
strategies guided by dependent parameters and distance.

9. Conclusion

In this paper, we present PREDATOR, an efficient directed
fuzzer for web applications. To solve the challenges of
applying directed fuzzing to web applications, PREDATOR
introduces several novel techniques to enable and augment
the directed fuzzing process, especially the block distance
supplementation and the mutation strategies tailored for
web applications. In the evaluation, PREDATOR shows ef-
fectiveness and efficiency in detecting vulnerabilities in
both synthetic and real-world web applications. Moreover,
it finds 26 previously unknown vulnerabilities in real-world
applications and 7 of them are acknowledged and patched
with 6 new CVE IDs assigned. We believe that PREDATOR
can foster research in the field of web application security
and contribute to the development of more sophisticated
directed fuzzers for web vulnerability detection.

10. Acknowledgment

The authors would like to thank the anonymous reviewers
for their valuable suggestions and comments. The work
described in this paper was partly supported by a grant from
the Research Grants Council of the Hong Kong SAR, China
(Project No.: CUHK 14209323).

References
[1] O. Foundation, “Top 10 web application security risks,” 2021, https:

//owasp.org/www-project-top-ten.
[2] ——, “Sql injection,” 2024, https://owasp.org/www-community/

attacks/SQL_Injection.
[3] ——, “Command injection,” 2024, https://owasp.org/www-community/

attacks/Command_Injection.
[4] ——, “Cross site scripting,” 2024, https://owasp.org/www-community/

attacks/xss.
[5] W3Techs, “Usage statistics of php for websites,” Apr. 2024, https:

//w3techs.com/technologies/details/pl-php.
[6] C. Luo, P. Li, and W. Meng, “Tchecker: Precise static inter-procedural

analysis for detecting taint-style vulnerabilities in php applications,”
in Proceedings of the 29th ACM Conference on Computer and
Communications Security (CCS), Los Angeles, CA, USA, Nov. 2022.

[7] J. Dahse and T. Holz, “Simulation of built-in php features for precise
static code analysis.” in Proceedings of the 2014 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, Feb. 2014.

[8] H. J. Kang, K. L. Aw, and D. Lo, “Detecting false alarms from
automatic static analysis tools: How far are we?” in Proceedings of
the 44th International Conference on Software Engineering (ICSE),
Pittsburgh, PA, USA, May 2022.

[9] P. Nunes, I. Medeiros, J. M. C. Fonseca, N. Neves, M. Correia, and
M. Vieira, “Benchmarking static analysis tools for web security,” IEEE
Transactions on Reliability, 2018.

[10] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of php application vulnerabilities,” in
Proceedings of the 2nd IEEE European Symposium on Security and
Privacy (EuroS&P), Paris, France, Apr. 2017.

[11] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool
for detecting web application vulnerabilities,” in Proceedings of the
27th IEEE Symposium on Security and Privacy (Oakland), Oakland,
CA, USA, May 2006.

[12] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox
data-driven web scanning,” in Proceedings of the 42nd IEEE Sympo-
sium on Security and Privacy (Oakland), San Francisco, CA, USA,
May 2021.

[13] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
A state-aware black-box web vulnerability scanner,” in Proceedings
of the 21st USENIX Security Symposium (Security), Bellevue, WA,
USA, Aug. 2012.

[14] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz:
Evolutionary fuzzing for black-box xss detection,” in Proceedings
of the 4th ACM conference on Data and application security and
privacy, 2014.

[15] O. van Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and
E. Athanasopoulos, “webfuzz: Grey-box fuzzing for web applications,”
in Proceedings of the 26th European Symposium on Research in
Computer Security (ESORICS), Virtual event, Oct. 2021.

[16] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna, C. Kruegel, R. Wang,
T. Bao, Y. Shoshitaishvili, and A. Doupé, “Toss a fault to your witcher:
Applying grey-box coverage-guided mutational fuzzing to detect sql
and command injection vulnerabilities,” in Proceedings of the 44th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, USA, May 2023.

[17] F. Gauthier, B. Hassanshahi, B. Selwyn-Smith, T. N. Mai, M. Schlüter,
and M. Williams, “Experience: Model-based, feedback-driven, greybox
web fuzzing with backrest,” in 36th European Conference on Object-
Oriented Programming (ECOOP 2022), 2022.

[18] E. Güler, S. Schumilo, M. Schloegel, N. Bars, P. Görz, X. Xu,
C. Kaygusuz, and T. Holz, “Atropos: Effective fuzzing of web
applications for server-side vulnerabilities,” in Proceedings of the
33th USENIX Security Symposium (Security), Philadelphia, PA, USA,
Aug. 2024.

[19] S. Neef, L. Kleissner, and J.-P. Seifert, “What all the phuzz is about:
A coverage-guided fuzzer for finding vulnerabilities in php web
applications,” in Proceedings of the 19th ACM Asia Conference on
Computer and Communications Security (ASIACCS), New York, NY,
USA, Apr. 2024.

[20] M. Zalewski, “American fuzzy lop,” 2021, https://github.com/google/
AFL.

[21] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in web applications using dynamic test generation
and explicit-state model checking,” IEEE Transactions on Software
Engineering, 2010.

[22] C. E. Silva and J. C. Campos, “Combining static and dynamic analysis
for the reverse engineering of web applications,” in Proceedings of the
5th ACM SIGCHI symposium on Engineering interactive computing
systems, 2013.

[23] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS), Dallas, TX, USA,
Oct.–Nov. 2017.

[24] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, USA, May 2018.

[25] G. Lee, W. Shim, and B. Lee, “Constraint-guided directed greybox
fuzzing,” in Proceedings of the 30th USENIX Security Symposium
(Security), Virtual Event, Aug. 2021.

[26] C. Luo, W. Meng, and P. Li, “Selectfuzz: Efficient directed fuzzing
with selective path exploration,” in Proceedings of the 44th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA,
USA, May 2023.

[27] H. Huang, Y. Guo, Q. Shi, P. Yao, R. Wu, and C. Zhang, “Beacon:
Directed grey-box fuzzing with provable path pruning,” in Proceedings

https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/xss
https://owasp.org/www-community/attacks/xss
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://github.com/google/AFL
https://github.com/google/AFL

of the 43th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, USA, May 2022.

[28] Z. Du, Y. Li, Y. Liu, and B. Mao, “Windranger: A directed greybox
fuzzer driven by deviation basic blocks,” in Proceedings of the 44th
International Conference on Software Engineering (ICSE), Pittsburgh,
PA, USA, May 2022.

[29] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in Proceedings of the
25th ACM Conference on Computer and Communications Security
(CCS), Toronto, Canada, Oct. 2018.

[30] J. Zhao, Y. Lu, K. Zhu, Z. Chen, and H. Huang, “Cefuzz: An directed
fuzzing framework for php rce vulnerability,” Electronics, 2022.

[31] I. Medeiros, N. Neves, and M. Correia, “Detecting and removing web
application vulnerabilities with static analysis and data mining,” IEEE
Transactions on Reliability, 2015.

[32] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan, “Navex:
Precise and scalable exploit generation for dynamic web applications,”
in Proceedings of the 27th USENIX Security Symposium (Security),
Baltimore, MD, USA, Aug. 2018.

[33] “Wfuzz,” 2020, https://github.com/xmendez/wfuzz.
[34] Nikic, “Php-fuzzer,” Aug. 2023, https://github.com/nikic/PHP-Fuzzer.
[35] M. Leithner, B. Garn, and D. E. Simos, “Hydra: Feedback-driven

black-box exploitation of injection vulnerabilities,” Information and
Software Technology, 2021.

[36] Z. Jingyu, H. Hongchao, H. Shumin, and L. Huanruo, “A xss attack
detection method based on subsequence matching algorithm,” in 2021
IEEE International Conference on Artificial Intelligence and Industrial
Design (AIID), 2021.

[37] M. Corporation, “Cve database,” 2024, https://cve.mitre.org/.
[38] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in

scripting languages.” in Proceedings of the 15th USENIX Security
Symposium (Security), Vancouver, Canada, Jul. 2006.

[39] P. Li and W. Meng, “Lchecker: Detecting loose comparison bugs
in php,” in Proceedings of the Web Conference (WWW), Ljubljana,
Slovenia, Apr. 2021.

[40] J. Huang, Y. Li, J. Zhang, and R. Dai, “Uchecker: Automatically
detecting php-based unrestricted file upload vulnerabilities,” in Pro-
ceedings of the 2019 International Conference on Dependable Systems
and Networks (DSN), Portland, OR, USA, Jun. 2019.

[41] O. Olivo, I. Dillig, and C. Lin, “Detecting and exploiting second order
denial-of-service vulnerabilities in web applications,” in Proceedings
of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, CO, USA, Oct. 2015.

[42] J. Dahse and T. Holz, “Static detection of second-order vulnerabilities
in web applications,” in Proceedings of the 23rd USENIX Security
Symposium (Security), San Diego, CA, USA, Aug. 2014.

[43] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in
scripting languages.” in Proceedings of the 15th USENIX Security
Symposium (Security), Vancouver, Canada, Jul. 2006.

[44] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,

“Chainsaw: Chained automated workflow-based exploit generation,”
in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[45] P. Li and M. Zhang, “Fuzzcache: Optimizing web application fuzzing
through software-based data cache,” in Proceedings of the 31st ACM
Conference on Computer and Communications Security (CCS), Salt
Lake City, UT, USA, Oct. 2024.

[46] X. Tan, Y. Zhang, J. Lu, X. Xiong, Z. Liu, and M. Yang, “Syzdirect:
Directed greybox fuzzing for linux kernel,” in Proceedings of the 30th
ACM Conference on Computer and Communications Security (CCS),
Copenhagen, Denmark, Nov. 2023.

[47] M. Fleischer, D. Das, P. Bose, W. Bai, K. Lu, M. Payer, C. Kruegel,
and G. Vigna, “Actor: Action-guided kernel fuzzing,” in Proceedings
of the 32nd USENIX Security Symposium (Security), Anaheim, CA,
USA, Aug. 2023.

[48] Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and K. Li, “Grebe:
Unveiling exploitation potential for linux kernel bugs,” in Proceedings
of the 43th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, USA, May 2022.

[49] “bwapp,” 2024, https://github.com/lmoroz/bWAPP.
[50] “Dvwa,” 2024, https://github.com/digininja/DVWA.
[51] “Xvwa,” 2020, https://github.com/s4n7h0/xvwa.
[52] “User login management system,” 2020, https://phpgurukul.com/user-

registration-login-and-user-management-system-with-admin-panel/.
[53] “Hospital management system,” 2019, https://phpgurukul.com/hospital-

management-system-in-php/.
[54] “Doctor appointment booking system,” 2020, https://projectworlds.

in/free-projects/php-projects/online-doctor-appointment-booking-
system-php-and-mysql/.

[55] “Piwigo,” 2024, https://github.com/Piwigo/Piwigo.
[56] “rconfig,” 2023, https://github.com/rconfig/rconfig-v3.
[57] “openemr,” 2018, https://www.open-emr.org/wiki/index.php/

OpenEMR_5.0.2_Linux_Installation.
[58] “Webid,” 2017, https://github.com/renlok/WeBid.
[59] “Joomla,” 2017, https://downloads.joomla.org/cms/joomla3/3-7-0.
[60] “Webchess,” 2019, https://github.com/halojoy/PHP7-Webchess.
[61] “Wordpress,” 2022, https://wordpress.org/download/releases/#branch-

60.
[62] “Ecshop,” 2021, https://www.ecshopok.com/article-789.html.
[63] “Haxcms,” 2024, https://github.com/elmsln/HAXcms.
[64] “Phpvibe,” 2024, https://github.com/PHPVibe/PHPVibe.
[65] “Online shopping system,” 2022, https://github.com/PuneethReddyHC/

online-shopping-system-advanced.
[66] “Collabtive,” 2017, https://github.com/philippK-de/Collabtive.
[67] “Codiad,” 2020, https://github.com/Codiad/Codiad.
[68] “Coppermine photo gallery,” 2021, https://github.com/coppermine-

gallery/cpg1.6.x.
[69] “Phpliteadmin,” 2019, https://github.com/phpLiteAdmin/pla.

https://github.com/xmendez/wfuzz
https://github.com/nikic/PHP-Fuzzer
https://cve.mitre.org/
https://github.com/lmoroz/bWAPP
https://github.com/digininja/DVWA
https://github.com/s4n7h0/xvwa
https://phpgurukul.com/user-registration-login-and-user-management-system-with-admin-panel/
https://phpgurukul.com/user-registration-login-and-user-management-system-with-admin-panel/
https://phpgurukul.com/hospital-management-system-in-php/
https://phpgurukul.com/hospital-management-system-in-php/
https://projectworlds.in/free-projects/php-projects/online-doctor-appointment-booking-system-php-and-mysql/
https://projectworlds.in/free-projects/php-projects/online-doctor-appointment-booking-system-php-and-mysql/
https://projectworlds.in/free-projects/php-projects/online-doctor-appointment-booking-system-php-and-mysql/
https://github.com/Piwigo/Piwigo
https://github.com/rconfig/rconfig-v3
https://www.open-emr.org/wiki/index.php/OpenEMR_5.0.2_Linux_Installation
https://www.open-emr.org/wiki/index.php/OpenEMR_5.0.2_Linux_Installation
https://github.com/renlok/WeBid
https://downloads.joomla.org/cms/joomla3/3-7-0
https://github.com/halojoy/PHP7-Webchess
https://wordpress.org/download/releases/#branch-60
https://wordpress.org/download/releases/#branch-60
https://www.ecshopok.com/article-789.html
https://github.com/elmsln/HAXcms
https://github.com/PHPVibe/PHPVibe
https://github.com/PuneethReddyHC/online-shopping-system-advanced
https://github.com/PuneethReddyHC/online-shopping-system-advanced
https://github.com/philippK-de/Collabtive
https://github.com/Codiad/Codiad
https://github.com/coppermine-gallery/cpg1.6.x
https://github.com/coppermine-gallery/cpg1.6.x
https://github.com/phpLiteAdmin/pla

Appendix A.
The Simplified Bytecode of ClassA

1 line op return operands

2 --

3 5 JMP ->10

4 6 INIT_FCALL_BY_NAME ’sanitize’

5 SEND_VAR_EX !1

6 DO_FCALL $4

7 ASSIGN !1, $4

8 7 POST_INC ~6 !2

9 FREE ~6

10 5 INIT_FCALL_BY_NAME ’validate’

11 SEND_VAR_EX !1

12 DO_FCALL $7

13 BOOL_NOT ~8 $7

14 JMPZ_EX ~8 ~8, ->17

15 IS_SMALLER ~9 !2, 3

16 BOOL ~8 ~9

17 JMPNZ ~8, ->4

18 9 IS_IDENTICAL ~10 !0, ’lookup’

19 JMPZ ~10, ->24

20 10 INIT_FCALL_BY_NAME ’benign_func’

21 SEND_VAR_EX !1

22 DO_FCALL

23 JMP ->30

24 11 IS_IDENTICAL ~12 !0, ’edit’

25 JMPZ ~12, ->30

26 12 INIT_FCALL_BY_NAME ’vuln_func’

27 SEND_VAR_EX !1

28 DO_FCALL

29 13

30 14 RETURN null

Listing 2: The simplified bytecode of ClassA in Listing 1. line
refers to the line number in the source code that corresponds to
the given bytecode, and the line number on the far left denotes the
line number of the bytecode itself.

Appendix B.
The Excluded Applications in RQ3

TABLE 8: The excluded applications and reasons.

Reason Application Version

No TP reported by TChecker

MediaWiki 1.36.2

WordPress 5.4.8

Joomla 3.10.3

phpBB 3.3.3

Incompatible with PHP 7

osCommerce2 2.3.4.1

Zen-Cart 1.5.5

Zen-Cart 1.3.8

Monstra 3.0.4

Unknown application version
Ecommerce-CodeIgniter -

stock-management -

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The paper describes a system called PREDATOR, which is
a directed fuzzing framework on PHP, to detect vulnerabilities
using a combination of static and dynamic analysis. Building
on prior work in fuzzing web applications, this paper
proposes uses the output of static analysis, using prior work
TChecker, then using this to drive a fuzzer, using prior work
Witcher, to confirm the vulnerability. While there have been
directed fuzzers in many contexts, this is the first directed
web application fuzzer.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance

1) PREDATOR can detect 26 previously unknown vulnera-
bilities in real-world applications and so far seven have
been confirmed and patched by their vendors.

2) This paper expands the field of directed fuzzing (which
has been shown to be difficult in other domains) to web
application fuzzing.

3) This paper will open-source the system, thus allowing
future researchers to build on this work.

	Introduction
	Background and Motivation
	Web Application Fuzzing
	Directed Fuzzing for Web Applications
	Motivation

	Challenges
	Predator
	Architecture Overview
	Static Analysis for Directed Web Fuzzing
	Entry URL Identification
	Targeted Input Corpus Construction
	Selective Dynamic Instrumentation

	Tailored Directed Fuzzing Techniques
	Block Distance Supplementation
	Tailored Input Mutation Strategies

	Implementation
	Evaluation
	Known Vulnerability Reproduction (RQ1)
	Effectiveness
	Efficiency
	Scalability

	Ablation Study (RQ2)
	Validating Static Analysis Reports (RQ3)
	Discovering New Vulnerabilities (RQ4)

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Appendix A: The Simplified Bytecode of ClassA
	Appendix B: The Excluded Applications in RQ3
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

