
Strengthening Supply Chain Security with Fine-grained Safe
Patch Identification

Changhua Luo
The Chinese University of Hong Kong

Hong Kong SAR, China
chluo@cse.cuhk.edu.hk

Wei Meng
The Chinese University of Hong Kong

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

Shuai Wang
HKUST

Hong Kong SAR, China
shuaiw@cse.ust.hk

ABSTRACT

Enhancing supply chain security is crucial, often involving the de-
tection of patches in upstream software. However, current security
patch analysis works yield relatively low recall rates (i.e., many se-
curity patches are missed). In this work, we offer a new solution to
detect safe patches and assist downstream developers in patch prop-
agation. Specifically, we develop SPatch to detect fine-grained safe
patches. SPatch leverages fine-grained patch analysis and a new
differential symbolic execution technique to analyze the functional
impacts of code changes.

We evaluated SPatch on various software, including the Linux
kernel and OpenSSL, and demonstrated that it outperformed ex-
isting methods in detecting safe patches, resulting in observable
security benefits. In our case studies, we updated hundreds of func-
tions in modern software using safe patches detected by SPatch
without causing any regression issues. Our detected safe security
patches have been merged into the latest version of downstream
software like ProtonVPN.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Supply Chain Security; Fine-grained Patch Analysis; Differential
Symbolic Execution;

ACM Reference Format:

Changhua Luo, Wei Meng, and Shuai Wang. 2024. Strengthening Sup-
ply Chain Security with Fine-grained Safe Patch Identification. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3597503.3639104

1 INTRODUCTION

Modern software commonly depends on upstream code on the
supply chain. Recent works have shown that vulnerabilities in de-
pendency code are common and often remain unfixed for extended
periods [29, 45]. The significant patch propagation delays leave a
large attack window for experienced hackers [43]. For example,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639104

the Android kernel maintainers had not patched a severe use-after-
free vulnerability1, which had been first discovered and fixed in
Linux kernel one year ago, until that vulnerability had been finally
exploited on most Android devices [12].

Identifying security patches in upstream software is critical for
promptly addressing vulnerabilities in dependency code of the
downstream software. Security patches refer to the code changes
that fix security vulnerabilities. Existing approaches to identifying
security patches include rule-based techniques [34, 40, 45] and deep
learning [31, 33, 36]. Despite continuous efforts, they often suffer
from high false negatives, i.e., missing many security patches. For
example, SID can only identify specific types of security patches
[40]. Other deep learning-based tools such as GraphSPD [33] and
PatchRNN [36] can achieve only a recall rate of lower than 50%.

In addition to identifying security patches, prior studies also
proposed to identify code changes that do not alter the program’s
semantics to help update dependency code [9, 24]. Specifically,
Upgradvisor utilized static analysis and selective tracing to help
maintainers determine whether the dependency updates affect ap-
plication semantics and minimize the efforts maintainers invest in
dependency updates [9].

Spider introduced an automated method to identify code changes
that (likely) preserve application functionality [24]. It considered
code changes safe to port (referred to as safe patches) if they satisfy
certain predefined conditions. The paper’s user survey showed that
82% of software maintainers (e.g., those of Ubuntu, etc.) considered
using safe patches for their projects. The remaining 18% of partici-
pants agreed that safe patches helped maintainers prioritize their
patch efforts.

We adopt Spider’s concept of safe patches as it was demonstrated
to be useful in the user survey [24]. However, we take a step further
by considering security features when detecting safe patches. The
rationale behind this is that fixing vulnerabilities is an important
motivation for software maintainers to update dependency code. In
our preliminary study, we find that Spider can identify only 38 out of
71 (53.5%) safe security patches as safe. The rest 46.5% safe security
patches would be incorrectly excluded. Upon further analysis, we
summarize two reasons for its false negatives. First, it employs an
imprecise intra-procedural data flow analysis that cannot reason
about the functional impact of code changes spanning multiple
functions. Second, it does not differentiate security updates from
functional updates in the same commits. Patch propagation remains
a challenge due to these limitations.

We aim to develop better techniques to address the aforemen-
tioned patch propagation issues in software supply chain security.
Specifically, for the security updates that do not alter software

1CVE-2019-2215

https://doi.org/10.1145/3597503.3639104
https://doi.org/10.1145/3597503.3639104

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Changhua Luo, Wei Meng, and Shuai Wang

functionality, we can decouple them from the irrelevant functional
updates in the same commits. Therefore, we can generate and pro-
vide downstream maintainers with more safe security patches that
improve their software’s security while ensuring functionality con-
sistency. To achieve this, unlike prior patch analysis works that
conduct analysis at the commit level [24, 33, 36], our approach
performs inter-procedural analysis to infer functional impacts at a
finer-grained level—independent code changes in one commit. We
target detecting partially-safe commits, which consist of safe code
changes (i.e., safe patches) and possibly some irrelevant unsafe code
changes. By identifying and porting the safe security-relevant code
changes in such commits, we can fix more vulnerable downstream
programs without breaking the existing code.

However, we encounter several challenges in identifying partially-
safe commits. First, we must strike the right granularity when split-
ting a commit into independent code change groups to avoid losing
patch meaning (too fine-grained) or being ineffective (like Spider,
too coarse-grained). In our solution, to split a commit, we consider
both edit actions [10] and data-flow effects. Specifically, we group
code changes into a change unit (CU) if they belong to one edit
action or affect the same variable. A CU serves as the basic unit
in safe patch identification and preserves the data-flow effects of
independent code changes. However, due to the imprecise nature of
dependency analysis, some CUs cannot be successfully applied (e.g.,
it uses undeclared variables). Generating compilable patched code
is a prerequisite for the subsequent differential symbolic execution
(DSE [27]) analysis (which determines if a CU is safe). Accordingly,
we perform a compatibility test on each CU. Different software
versions often require different building environments, making it
challenging to test patch compatibility. For example, a compiler
used for an older version of the Linux kernel might not work for
more recent versions. To tackle this issue, we propose a solution to
test the compatibility of a CU as long as its code changes do not
employ language features unsupported by the testing environment.
Specifically, we identify and utilize compilation commands associ-
ated with that CU rather than the Makefile utility for testing its
compatibility.

The second challenge we encounter is the complexity involved in
analyzing the functional impacts of code changes in modern appli-
cations. While Spider attempts to address this challenge, it suffers
from issues with stability and feature completeness. For example, it
lacks support for C/C++ macros and the analysis of modifications
to function calls. To overcome this challenge, we implement C/C++
DSE [27], a technique that computes and compares symbolic expres-
sions in original and patched functions to infer a CU’s effects. Our
tool is robust as it handles various language features by leverag-
ing a mature compiler wrapper called scan-build [21]. However,
we represent symbolic expressions using program variables rather
than LLVM-IR (though it is used by mainstream symbolic execution
tools like KLEE [17]), as this enables a precise differential analy-
sis of original and patched functions. We further implement an
under-constrained analysis and propose an on-demand DSE analy-
sis, which includes selectively symbolic interpretation of function
calls and statically filtering out statements irrelevant to the patches.
All these enhancements mitigate the path explosion problem during
the DSE phase.

We implemented all the techniques in a system called SPatch
and conducted a comprehensive evaluation of SPatch on complex
software projects including the Linux kernel and OpenSSL. SPatch
detected 12,140 safe patches (including security patches and non-
security safe patches) among 17,513 commits. Our analysis indicates
that the number of partially-safe commits is almost equivalent to
that of commits consisting solely of safe patches (which we refer
to as safe commits). We conducted an ablation study to analyze the
effectiveness of SPatch’s components. We also emulated Spider
[24] following its design, as its source code has not been released
yet. The results confirmed the significance of both the considera-
tion of partially-safe commits and our proposed DSE technique for
detecting safe patches. To evaluate the security benefits of SPatch,
we manually analyzed 1,100 randomly selected commits, which
included 52 security patches. Among them, SPatch detected 40
as safe security patches, achieving a recall rate of 76.93% for all
security patches. In contrast, Spider achieved a recall rate of 40.48%.
We conducted end-to-end patch porting on popular open-source
software—Redis [28] and ProtonVPN [5]. We updated hundreds of
functions in their dependencies using the safe patches detected by
SPatch. The updated codes could be successfully built and they
passed all regression tests. Maintainers have merged five safe secu-
rity patches we submitted via pull requests. Additionally, we were
rewarded with a bounty for fixing vulnerabilities in the outdated
dependency code of ProtonVPN.

In summary, this paper makes the following contributions:
• We developed SPatch, a tool for comprehensively detecting
fine-grained safe patches using DSE.

• Our evaluation showed that SPatch brought clear security
benefits compared to existing tools without incurring regres-
sion issues.

• SPatch and the artifacts will be publicly available at https:
//github.com/cuhk-seclab/SPatch.

2 BACKGROUND

In this section, we introduce code reuse and the vulnerabilities in
dependency code (§2.1), the existing works on identifying security
patches (§2.2) and safe patches (§2.3).

2.1 Supply Chain Vulnerabilities

Supply chain vulnerabilities are prevalent. Past works have shown
that many vulnerabilities in dependency code remain unpatched
for a long time even if they are fixed in the upstream programs [18,
29, 43]. For instance, Reid et al. [29] found that over half of their
studied projects had a common upstream dependency and thus
derived the same vulnerability from the upstream project, which
fixed it three years ago. Zhang et al. [43] revealed that nearly half
of the CVEs were not patched on the OEM devices until 200 days
or more after the initial patches in upstream code were publicly
committed. The significant patch propagation delays leave a large
attack window for attackers and could cause severe security issues
[15, 43, 45].

2.2 Security Patches

Security patches are code changes that fix vulnerabilities. Identi-
fying security patches in upstream software is crucial as it helps

https://github.com/cuhk-seclab/SPatch
https://github.com/cuhk-seclab/SPatch

Strengthening Supply Chain Security with Fine-grained Safe Patch Identification ICSE ’24, April 14–20, 2024, Lisbon, Portugal

downstream developers fix vulnerabilities in their own dependency
code. Consequently, numerous approaches have been proposed to
detect security patches, including rule-based methods [13, 40] and
deep learning techniques [33, 36, 44]. Detecting security patches
requires some prior knowledge. Rule-based approaches rely on
predefined code patterns to detect security patches, whereas deep
learning methods depend on high-quality and diverse datasets to
train models. Both approaches face a trade-off between precision
and recall. For example, the state-of-the-art security patch detection
tool GraphSPD [33] employs a GNN model, surpassing those using
RNN [36, 44]. Its evaluation achieves high precision yet a relatively
lower recall rate of 43.5% (i.e., many false negatives).

2.3 Patches Preserving Functionality

In addition to detecting patches fixing security vulnerabilities, exist-
ingworks also detect patches that preserve application functionality
to help downstream developers update dependency code.

2.3.1 Upgradvisor. David et al. proposed Upgradvisor to identify
safe updates, i.e., code changes that preserve application functional-
ity, in dependencies [9]. To achieve this, it utilizes static analysis to
identify the code changes that might be reachable from the applica-
tion code. Subsequently, the code is selectively traced. The tracing
is implemented with minimal overhead, allowing Upgradvisor to
capture the effects of code changes in a production environment.
Upgradvisor requires manual efforts to examine the tracing results
and evaluate whether the executed code changes impact application
semantics. The evaluation on Python projects revealed that many
previously blocked dependencies were safe to update.

2.3.2 Spider. Machiry et al. defined a concept called safe patches
(abbreviated to SPs) [24]. SPs are the code changes that satisfy two
conditions:

• Non-increasing input space (C1): the code changes do not
increase the valid input space. The valid inputs denote the
inputs whose executions do not trigger the error-handling
code.

• Output equivalence (C2): for all valid inputs, the updated
function has the same function outputs as the original func-
tion. The function outputs denote the variables that can be
accessed outside the function scope, including the global
variables, return values, etc.

Machiry et al. proposed Spider [24] to identify SPs. They imple-
mented C/C++ symbolic execution from scratch to check C1 and C2.
Due to the challenges of implementing C/C++ symbolic execution,
Spider is open to false negatives, i.e., potentially classifying SPs as
unsafe. For example, Spider considers any code changes involving
function calls unsafe. Its evaluation shows that only 19% of commits
are safe and can be ported to downstream.

Compared tomanually examining the functional impacts of some
patches (as in Upgradvisor), detecting SPs offers an automated way
to pinpoint (presumably) portable patches. According to the user
surveys in [24], developers plan to use SPs or prioritize investigat-
ing SPs. Based on this observation, this work uses the definition of
SPs in Spider to infer the functional impacts of code changes. Unlike
Spider, we detect partially-safe commits and SPs involving func-
tion calls, using differential symbolic execution (DSE). The design

is driven by insights from our patch study in §3.1, which under-
scores the importance of a fine-grained inter-procedural analysis
in detecting safe security patches.

3 PROBLEM STATEMENT

In this section, we motivate the work with an example in §3.1, and
present our research scope and research goals in §3.2.

3.1 A Motivating Example

Listing 1 shows a commit that includes a security patch fixing a
vulnerability2 in the Linux kernel. We choose this example as it
represents a typical security patch and is relatively easy for readers
to comprehend. The security patch fixes a use-after-free (UAF) by
validating page before using it (lines 12-19). To detect this patch
using security patch detection tools, it is necessary to model UAF
vulnerabilities or include similar UAF patches in the training dataset.
In the following, we show how we can detect it by identifying (fine-
grained) SPs and the limitations of Spider.

The patch involves modifications to function calls. It also intro-
duces a new if condition (line 15), which could lead to the error
handling code (lines 16-17). By inlining the callee functions of these
modified calls and analyzing the control flow and data flow, we can
conclude that the patch reduces the valid input space (satisfying C1)
and does not alter function outputs (satisfying C2). Thus, the code
changes in lines 12-19 are SPs. Additionally, the commit introduces
other code changes.

The security patch may seem simple, but understanding its func-
tional impacts is not straightforward. Spider fails to detect this
patch for two reasons. First, Spider cannot understand the effects of
function calls, leading to a missed identification of the safe security
patch. Second, it identifies patches at a commit granularity, causing
the SP (partially-safe commit) in lines 12-19 to be conservatively
excluded once again.

We investigate the ability of Spider to analyze the functional
impacts of security patches. Specifically, we randomly selected 100
commits that include security patches from patchDB [35], and man-
ually pinpointed the locations of security patches. We found that
1 31 security patches involved modifications to function calls (that
invoked custom functions like input validation functions, lock/un-
lock functions, clean functions, etc.); 2 38 commits included the
simultaneous implementation of safe security patches and other
code changes. There were occurrences where 1 and 2 overlapped.
Seventeen safe security patches, which included modifications to
function calls, were committed alongside other code changes. Our
manual analysis showed that 71 security patches were also safe
patches, while Spider could detect 38 among them. In contrast,
SPatch identified all SPs detected by Spider and 27 additional ones,
achieving a 91.55% recall rate for safe security patches and a 65%
recall rate for all security patches. We further discuss the reasons
for false negatives of SPatch in detecting safe security patches in
§6.3.

3.2 Research Goals and Scope

This work improves SP detection techniques by taking into account
the following security patch features. We specifically emphasize
2CVE-2019-11487

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Changhua Luo, Wei Meng, and Shuai Wang

1 ∗ ∗ ∗
2 2 f i l e s changed , 49 i n s e r t i o n s (+) , 12 d e l e t i o n s (−)
3
4 d i f f −− g i t a /mm/ gup . c b /mm/ gup . c
5 i ndex 75029649 baca . . 8 1 e 0bd e f a 2 c c 100644
6 −−− a /mm/ gup . c
7 +++ b /mm/ gup . c
8 (∗ \ t e x t b f {@@ −157 ,8 +157 , 12 @@ r e t r y : } ∗)
9 goto r e t r y ;
10 }
11
12 − i f (f l a g s & FOLL_GET)
13 − ge t_page (page) ;
14 + i f (f l a g s & FOLL_GET) {
15 + i f (u n l i k e l y (! t r y _g e t _p ag e (page))) {
16 + page = ERR_PTR(−ENOMEM) ;
17 + goto out ;
18 + }
19 + }
20 i f (f l a g s & FOLL_TOUCH) {
21 i f ((f l a g s & FOLL_WRITE) &&
22 ! p t e _ d i r t y (p t e) && ! PageDi r ty (page))
23
24 . . . / / o t h e r code changes .

Listing 1: A commit fixes a use-after-free vulnerability in Linux

kernel.

the consideration of security patch features in SP detection due to
the important role of patching security vulnerabilities in updating
dependency code. First, instead of performing patch analysis at a
commit level like many prior works did, we aim to detect which
code changes of a commit are SPs. We do this because a commit
may contain both security updates and functionality updates. Sec-
ond, we aim to design a precise and powerful DSE approach for
complex C/C++ software. Specifically, our analysis should be inter-
procedural and support various C/C++ language features that Spider
might overlook. These capabilities are important. As revealed in
an exhaustive study conducted by Wang et al. [35], a significant
proportion (24.4%) of the security patches involved modifications
to function calls. Language features like macro calls and C/C++
directives (e.g., #ifdef) are also widely used in modern software.

We follow Spider’s SP concept, aiming to comprehensively de-
tect code changes satisfying C1 and C2. In §7, we will compare
this approach with Upgradvisor, which employs manual analysis
to evaluate the functional impacts of code changes. Besides, we
only analyze code changes in the C/C++ files that are compiled
into executable. Finally, we aim to assist patch propagation but do
not directly fix vulnerabilities in downstream software. As down-
stream developers usually reuse code with diverse syntax modi-
fications [39], generating new patches for different programs is
orthogonal to this work.

4 DESIGN

We develop SPatch to detect SPs in the upstream software repos-
itory. In this section, we first give an overview of SPatch in §4.1
and then present its detailed component-wise design.

4.1 Overview

SPatch employs several techniques to achieve its research goals.
First, it adopts a fine-grained approach to analyze SPs in each
commit. Instead of consideringwhole commits, SPatch groups code
changes of a commit into Change Units (CUs) and identifies CUs
that independently qualify as SPs. This approach allows for more
precise patch analysis. Second, to comprehensively analyze each CU,
SPatch performs on-demand DSE. It compiles (and symbolically

The
commit
history

Fetch a
commit and

checkout

Multiple
Change

Units (CUs)
Static

analysis

Inter-procedural
symbolic path

exploration

Safe patches

Invalid CUs

Invalid CUs

Figure 1: Overview of SPatch.

executes) the updated program components to analyze the effects
of their code changes. To handle modifications to function calls,
SPatch selectively inlines callee functions that might influence the
identification of SPs. These strategies avoid exploring unrelated
program paths in DSE.

The workflow of SPatch is depicted in Figure 1. Since not all
commits update the source code, SPatch filters out some irrelevant
commits. It first (temporarily) excludes merge commits which only
include a lot of repetitive code changes. The merge commits are
later analyzed based on the detection results of non-merge com-
mits. Furthermore, not all C/C++ files are compiled into binaries.
SPatch also filters out the C/C++ files that are not utilized in the
software building process, as their source code and patches are
never reachable.

SPatch then groups code changes of a commit into CUs. Mul-
tiple code changes are grouped into one CU if they belong to one
edit action or have intra-procedural data dependencies with the
same program variable (§4.2). Each CU within a patched function
is independent of the others. SPatch can later separately verify
them to determine which ones are SPs. SPatch applies each CU
and compiles the updated code to determine whether or not the
code causes compatibility issues. It excludes the CUs that result in
compatibility issues and feeds the rest into the subsequent analysis.

SPatch employs a two-stage program analysis technique, includ-
ing coarse-grained static analysis and on-demand DSE analysis, to
detect SPs among CUs (§4.3). Static analysis allows SPatch to effi-
ciently pinpoint some SPs, i.e., the CUs that have no dependencies
with the variables (referred to as critical variables in the subsequent
sections) used in path constraints (C1) or function outputs (C2). It
also facilitates the symbolic execution phase by providing neces-
sary information, such as the function calls that require symbolic
interpretation. The DSE phase analyzes the CUs that cannot be
determined by static analysis. SPatch compares the symbolic ex-
pressions in the original and patched functions to identify if a CU
is an SP.

4.2 Grouping Code Changes

In this subsection, we introduce howwe split a commit intomultiple
CUs (the basic units of SP identification). A CU is atomic, i.e., the
code changes in one CU occur entirely or not at all.

Strengthening Supply Chain Security with Fine-grained Safe Patch Identification ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 i n t foo () {
2 − i n t a =1 ;
3 + i n t a =0 ;
4 − i n t b =1/ a ;
5 + i n t b = 1 / (a +1) ;
6 + i n t c ;
7 }

Listing 2: An example that demonstrates how SPatch identifies CUs.

4.2.1 Identifying CUs. SPatch merges the code changes that be-
long to one edit action into a CU. An edit action is an atomic mod-
ification made to the code. We use Gumtree [10] to identify four
categories of edit actions, namely add, delete, update, and move. In
addition to edit actions, we also consider data dependencies among
code changes. Applying partial code changes in a commit may lead
to issues, as will be illustrated in Listing 2. To avoid potential issues,
we merge the code changes into one CU when they have data-flow
influence on the same variable(s).

We use Listing 2 to demonstrate how SPatch identifies CUs from
code changes. There are three edit actions, which are update (lines
2 and 3), update (lines 4 and 5), and add (line 6). SPatch merges
code changes having data dependencies, which are code changes
in line 2 and line 4 (in the original function), line 3 and line 5 (in
the updated function). This avoids potential issues, e.g., updating a
to 0 but not updating expressions using a. Code changes in lines 2,
3, 4, and 5 are merged into one CU as they either belong to one edit
action or have data dependencies. Finally, SPatch identifies two
CUs in Listing 2, which are 1 changes in lines 2-5 and 2 changes
in line 6.

It should be noted that inter-procedural data dependencies are
not being considered at this time. Failure to consider inter-procedural
data dependencies may lead to issues. For instance, if we discard
a CU and apply another one that uses the variables defined in the
discarded CU, the applied CU will be invalid and thus may not
be successfully ported to the vulnerable code. We discuss how we
solve this problem in §4.2.2.

4.2.2 Identifying SP Candidates. Similar to other patch analysis
works [24, 33], we exclude certain types of code changes from
further analysis. Since SPatch aims to generate a portable patch, it
further filters out the CUs that cause compatibility issues. We view
the remaining CUs as potential 𝑆𝑃 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 for further analysis.

The following CUs are initially excluded by SPatch. SPatch first
discards any CUs that involve global scope edits. Updating global
scope statements usually requires analyzing the whole program
[19]. For instance, updating a global scope data structure requires
analyzing all the code using the data structure. They are beyond our
analysis scope. Second, SPatch excludes the CUs that 1) directly
update loop statements or the number of iterations of loop state-
ments that affect function outputs or 2) write to unknown memory
locations pointed by pointers. This is because handling pointers
requires the whole program analysis [23], and updating statements
in loops renders the data analysis results undecidable [24].

After discarding these CUs, SPatch proceeds to identify and
eliminate any incompatible CUs caused by using identifiers or data
types defined in the discarded CUs. To this end, we apply a CU and
compile the updated code to test if it causes any compatibility issues
(e.g., using undefined variables). Compiling the software is time-
consuming and fragile due to different environment requirements.

We generate a minified program that includes the patched function
affected by a CU to test its compatibility. As a function typically
employs legacy identifiers or data types that are defined outside
the scope of the function (e.g., FOLL_WRITE in Listing 1), compiling
the minified program alone might incur compilation errors caused
by these (legacy) identifiers, which are not directly related to the
CU itself. We discuss how SPatch addresses this issue in §5.3.

4.3 Identifying SPs

In this subsection, we perform static analysis and DSE to identify
SPs among SP candidates. Static analysis not only detects the SPs
that do not influence the critical variables but assists the follow-
ing DSE (e.g., by providing updated function call arguments). DSE
enables SPatch to identify SPs even though they affect critical vari-
ables, as having data dependencies with critical variables does not
necessarily indicate updating their values.

4.3.1 Static Analysis. In this step, SPatch performs light-weight
static analysis to quickly identify some SPs.
Error-handling Code Although some code changes in error-
handling code might affect functionality, we adopt the approach in
Spider and consider that modifications to the error-handling code
do not influence the detection results of SPs. We use the state-of-
the-art tool ErrDoc [32] to identify error-handling code. However,
it shares some limitations (e.g., false positives) with other tools. We
leave the optimization as future work. In our subsequent analysis,
we omit the path constraints that result in the execution of identified
error-handling code (lines 16-17 in Listing 1) and function outputs
in error-handling code.
Data-flowAnalysis SPatch performs light-weight intra-procedural
data-flow analysis to pinpoint the SP candidates that do not affect
path constraints and function outputs. To this end, it performs slic-
ing in a forward direction using the SP candidates as criteria. If the
data-flow slicing does not contain statements written to critical vari-
ables used in path constraints or function outputs, the candidates
are identified as SPs directly.

The data-flow analysis also facilitates DSE. First, SPatch has
been designed to exclude modeling complex statements that are
determined to remain unaffected by SP candidates. This improves ac-
curacy as SMT has limitations in modeling intricate expressions [6].
Besides, SPatch identifies the function calls affected by the candi-
dates. The results are utilized when SPatch performs selectively
symbolic path exploration in §4.3.2.

4.3.2 On-demand DSE. SPatch employs DSE to analyze whether
the data dependencies involving crucial variables lead to modi-
fications in their values. Although software typically contains a
substantial amount of code, only a minor portion of it, such as
the statements that write to global variables, determines whether
the candidates are SPs. Therefore, we perform DSE on demand. In
particular, we symbolically execute only the updated functions, and
selectively interpret function calls to mitigate the path explosion
problem.
Symbolic Execution at Source Code Level SPatch implemented
DSE at a source-code level. Most C/C++ symbolic execution tools
are based on LLVM-IR, and we are unable to directly use these tools
as comparing symbolic expressions represented with IR variables

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Changhua Luo, Wei Meng, and Shuai Wang

cannot be done precisely. For instance, the same variable in original
and patched functions might be represented with distinct IR vari-
ables. Aligning these symbols and constraints unavoidably incurs
errors [22].

We built SPatch using Juxta [25], a mature tool based on scan-
build [21], enabling source-code-level symbolic execution. Juxta
runs the compiler on the source code and intercepts the compiler
output (e.g., control flow graphs) to symbolically explore the pro-
gram paths.
Under-constrained Analysis Efficiency is a primary concern in
DSE due to millions of patched functions that need to be analyzed.
We initially leveraged the incremental updating mechanism and
recompiled the software upon analyzing a new commit. The com-
piler, as well as Juxta, would then only focus on the code that has
changed since the last analysis. This approach is not practical for
the following reasons. First, the compiler may encounter several
problems during software building, such as missing dependencies
or incompatible compiler versions. If the building process fails,
Juxta cannot conduct symbolic execution. Second, even though
we could successfully compile the software, it is difficult to interpret
the symbolic execution results. As an example, building OpenSSL
produces more than a million program paths. Pinpointing the paths
that a CU updates is difficult.

Our approach is to reuse the minified program generated in
compatibility testing, i.e., we compile and perform DSE on the
original and patched functions only. However, no source-code-
level symbolic execution tools, including Juxta, support under-
constrained analysis.We discuss the implementation detail of under-
constrained analysis on Juxta in §5.4.
Selectively Symbolic Interpretation SPatch selectively inlines
the callee functions to analyze the modifications to function calls.
Specifically, SPatch selectively interprets function calls if two con-
ditions are met. First, if the function calls are updated (i.e., the
arguments are updated, or the call sites are added or deleted) by the
SP candidates. Second, if the callee function is not classified as one
of the logging functions (e.g., printk()). Function calls that do not
meet the two conditions are not interpreted. Since their behaviors
remain unchanged before and after applying the code changes, they
should not have any influence on the detection of SPs.

The callee functions could also contain call sites. SPatch follows
the same strategies to interpret the updated function calls in callee
functions. Specifically, it symbolically interprets the nested call sites
whose arguments are data-dependent on the modified arguments
(of the callee function). Note that the commit might update callee
functions simultaneously. SPatch does not consider SPs made to
callee functions when analyzing the caller functions, as the function
outputs of callee functions should not be changed by applying SPs
produced by SPatch.

SPatch might be unable to symbolically analyze a few SP candi-
dates. It conservatively discards some candidates if they satisfy the
following conditions. First, to symbolically interpret a function call,
SPatch needs to statically identify and include the callee function
(see more details in §5.4). If SPatch cannot identify a unique callee
function (e.g., of an indirect call), it considers any modifications on
them unsafe. Second, SPatch considers an SP candidate unsafe if
the modified arguments of function calls write to unknown pointers

in callee functions. Finally, SPatch considers an SP candidate unsafe
upon reaching the predefined threshold (five nested call sites in our
implementation) or encountering recursive calls. Similar to Juxta,
SPatch unrolls loops once during symbolic execution. SPatch ter-
minates symbolic execution in the aforementioned cases and can
analyze 71.91% (16,123 out of 22,420) of CUs in our evaluation.

4.3.3 Detecting SPs in Non-merge Commits. In this step, SPatch
detects SPs among the SP candidates.
Comparing Symbolic Expressions SPatch utilizes the z3 solver
to detect SPs by comparing the symbolic expressions of original
and updated functions. To ensure 1) the equivalence of function
outputs between the original and patched functions and 2) the code
changes do not expand the valid input space, SPatch formulates and
solves two expressions. The first expression,𝑂𝑜==𝑂𝑢 , checks if the
function outputs of the original (𝑂𝑜) and updated (𝑂𝑢) functions
are equal. The second expression, 𝐼𝑚𝑝𝑙𝑖𝑒𝑠 (𝑃𝐶𝑢 , 𝑃𝐶𝑜), checks if
the path constraints in the patched function (𝑃𝐶𝑢) imply those in
the original function (𝑃𝐶𝑜). SPatch then identifies the statements
where the violation of C1 or C2 occurs, which are referred to as
𝑆𝑡𝑚𝑡𝑖𝑛𝑣𝑎𝑙𝑖𝑑 . 𝑆𝑡𝑚𝑡𝑖𝑛𝑣𝑎𝑙𝑖𝑑 can either be the 1) (expanded) control-
dependent statements or 2) return statements or assignments to
(updated) function outputs.
Detecting SPs SPatch finally selects SPs from the SP candidates
by excluding those that have data dependencies with 𝑆𝑡𝑚𝑡𝑖𝑛𝑣𝑎𝑙𝑖𝑑
identified in the previous step. Since the SP candidates are indepen-
dent of each other, it could safely exclude arbitrary ones without
any concerns. In this way, SPatch separates functionality updates
from SPs and answers which code changes are SPs, rather than
determining whether all code changes made in a commit are SPs.

4.3.4 Detecting SPs in Merge Commits. We propose an approach
to exclusively handle merge commits. As a merge commit (𝐶𝑚)
has multiple parent commits, SPatch first identifies one parent
commit (𝐶𝑝) themerge commit compares with. SPatch then obtains
SPs from 𝐶𝑝 to 𝐶𝑚 by aggregating SPs introduced in other parent
commits of 𝐶𝑚 . In this way, SPatch avoids repeatedly analyzing
code changes that are introduced by non-merge commits and later
reappear in merge commits.

However, the code changes in a merge commit are not always
equivalent to the aggregated changes of all its parent commits.
A typical example is when merge conflicts occur. Resolving these
conflicts will require additional adjustments to ensure compatibility.
SPatch ignores parents’ SPs (e.g., those writing to one file and
merging into one commit) that lead to conflicts by not aggregating
them, although this causes these SPs to be finally missed.

5 IMPLEMENTATION

We implemented SPatch with 3,830 LoC in Python, Scala, and Java.
We discuss some important implementation details below.

5.1 Static Analysis

SPatch performs dependency analysis for the original and patched
functions using Joern [42]. It computes path constraints by col-
lecting the statements on which the return statements are control-
dependent, and performs data-dependency analysis when grouping
code modifications into CUs (§4.2) and verifying SPs (§4.3).

Strengthening Supply Chain Security with Fine-grained Safe Patch Identification ICSE ’24, April 14–20, 2024, Lisbon, Portugal

SPatch also needs to infer target functions of function calls. To
this end, it constructs a call graph for the software using MLTA [20].
MLTA operates on LLVM-IR code, which is time-consuming to gen-
erate for each commit. Therefore, SPatch generates a call graph
for a base commit and reuses that call graph when analyzing call
relationships of the same program in the subsequent commits.

5.2 Cross-function Mapping

SPatch merges code modifications if they have data dependencies
with the same variables. The code modifications and their respec-
tive data-dependent statements are located in both the original
and patched functions. As a result, identifying the overlapping
data-dependent statements becomes challenging since they are
distributed across two functions.

To solve this problem, an approach is to combine the deleted
and added statements into one function like GraphSPD did [33].
For example, we could produce a new function that includes lines
12-19 when analyzing Listing 1. We found that this approach might
not work when the code modifications alter the control structures.
For instance, some security patches update a single if statement
ending with {. Applying both the deleted if and added if statements
would produce an invalid function on which Joern fails to perform
control- and data-dependency analysis.

To synchronize the positions of the statements, SPatch main-
tains two versions of the functions. We substitute each removed
statement (lines 12-13 in Listing 1) with a new line in the updated
version and each added statement (lines 14-19) with a new line in
the original version. We then locate the overlapped data-dependent
statements based on the line numbers.

5.3 Compiling Minified Programs

SPatch compiles a minified program that includes the patched func-
tion to validate CUs (§4.2.2) and collect symbolic path constraints
(§4.3.2). However, a single function is usually not compilable as
it might use identifiers defined outside the function scope. Thus,
it is important to include the necessary dependency code before
compiling it. Prior works [40] performed control-dependency anal-
ysis and taint analysis to identify the dependent code of a function.
These approaches have limitations because of the imprecise static
analysis.

Our observation is that a C/C++ program typically includes the
dependency files using the #include directives. Therefore, SPatch
starts by locating the file (e.g., FF.c) where func() is located. It then
includes the header files and global identifiers inside FF.c to compile
func(). The challenge of this approach is to provide the compiler
with the concrete paths of any custom header files. For instance,
the header file linux/init.h in the Linux kernel corresponds to
the path linux_dir/include/linux/init.h. To do so, we run the
make utility and log the executed command lines for compiling
each source file (e.g., gcc -I./include/linux ... -c FF.c). We
then re-compile the function using the compile options (which
specify the locations of dependency files) under the same directory.
Note that we only need to log the compilation commands once and
reuse them when compiling the functions in other commits.

5.4 Differential Symbolic Execution

SPatch performs DSE on the original function and updated func-
tion. Our DSE is built upon Juxta, a source-code-level symbolic
execution tool that is further built upon scan-build. Juxta tra-
verses the control flow graph (CFG) from the entry functions of
a software project and inlines callee functions until its analysis
reaches a predefined threshold. The entry functions are the func-
tions that are not called by other functions in the program.

We implemented under-constrained analysis and selective sym-
bolic interpretation analysis upon Juxta [25]. We perform under-
constrained analysis by reusing the minified program that includes
the patched function and its dependency files. Specifically, we gen-
erate CFG for the minified program using Clang. When compiling
the program, Juxta updates the path constraints and symbolic
values following its CFG paths. To symbolically interpret the func-
tion calls in a patched function, we include the callee functions
in the minified program. We then modify Juxta to only interpret
the function calls we specify. The callee functions would then be
inlined when the target function is symbolically executed. Since
the callee function might use identifiers that are not defined in the
caller function’s scope, we also include the header files of the in-
lined callee functions. Finally, we compare the symbolic expressions
in original and patched functions to perform DSE.

6 EVALUATION

In this section, we evaluate SPatch on a large set of commits in
real-world software. we first describe the experiment setups used
for identifying SPs (§6.1). We then present the evaluation results,
e.g., the number of partially-safe commits (§6.2). Next, we discuss
the security implications of SPatch by analyzing real-world vul-
nerabilities and security patches (§6.3), and further showcase its
benefits with one end-to-end case study (§6.4). Finally, we discuss
the analysis performance (§6.5).

6.1 Experiment Setups

We evaluated SPatch on a set of Git commits. Due to the unavail-
ability of an evaluation dataset for safe patch analysis, we conducted
a random selection from Git history of popular software, resulting
in a total of continuous 45,296 commits from 11 widely-used code
repositories. The dataset spans from 2015 to 2023, ensuring that it
includes a diverse representation of Git commits over the years. Our
dataset includes a diverse range of 11 software. For instance, we
included the Linux kernel that was reused by the Android operating
system and the OpenSSL library as it served as the foundation for
numerous software applications. The software names and the num-
ber of analyzed commits are listed in the first and second columns
of Table 1, respectively. We tend to include a higher number of
commits in our dataset for projects with a longer commit history.
In our experiments, we built the software using the default com-
pilation options on a computer running Debian stretch, equipped
with Intel Xeon W-2123 4-core 3.6GHz Processor and 16 GB RAM.
We evaluated SPatch’s performance on the same computer.

6.2 SPs in Commits

In this subsection, we present the overall results and how each
component in SPatch contributes to the results in §6.2.1, then

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Changhua Luo, Wei Meng, and Shuai Wang

Table 1: The final results and intermediate results of each stage. 𝐶𝑜𝑚𝑚𝑖𝑡𝑠𝑡𝑜𝑡𝑎𝑙 , 𝐶𝑜𝑚𝑚𝑖𝑡𝑠𝑠𝑖𝑛𝑔 , and 𝐶𝑜𝑚𝑚𝑖𝑡𝑠𝑎𝑛𝑎 denote the number of total,

non-merge, and analyzed commits. 𝑆𝑃𝑐𝑎𝑛𝑑 denotes the number of SP candidates. 𝑆𝑃𝑑𝑓 and 𝑆𝑃𝑠𝑒 denote the number of SPs that are identified

with data-flow analysis and symbolic execution. 𝑆𝑃𝑖𝑡 and 𝑆𝑃𝑖𝑛𝑡𝑟𝑎 denote the number of SPs identified with and without interpreting call sites.

𝐶𝑈𝑛𝑜 denotes the number of CUs that are identified as non-SPs and𝐶𝑈𝑢𝑛𝑘𝑛𝑜𝑤𝑛 denotes the number of CUs that remain undetermined.

Software 𝐶𝑜𝑚𝑚𝑖𝑡𝑠𝑡𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑚𝑖𝑡𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑡𝑠𝑎𝑛𝑎 Functions Edit actions CUs 𝑆𝑃𝑐𝑎𝑛𝑑 s 𝑆𝑃𝑑𝑓 s
𝑆𝑃𝑠𝑒s Non SPs

𝑆𝑃𝑖𝑡 s 𝑆𝑃𝑖𝑛𝑡𝑟𝑎s 𝐶𝑈𝑛𝑜s 𝐶𝑈𝑢𝑛𝑘𝑛𝑜𝑤𝑛s
Linux kernel 12,235 11,107 3,824 6,155 11,933 9,326 6,103 488 1,380 873 1,404 1,958
python interpreter 7,111 7,095 1,613 2,935 6,543 4,595 2,721 410 626 250 854 581
PHP interpreter 3,179 2,002 505 812 1,698 1,181 929 155 271 49 344 110
OpenSSL 5,559 5,559 2,099 4,147 9,532 6,668 3,216 353 772 579 514 998
FFmpeg 1,647 1,647 1,116 1,745 3,549 2,440 999 80 117 355 201 246
libpng 3,657 3,597 1,859 3,028 7,275 3,876 3,400 581 358 751 1,317 393
lua 3,065 3,064 2,080 3,534 6,598 5,352 2,549 247 1,011 102 270 919
binutils-gdb 3,212 3,212 2,118 3,987 5,096 4,439 3,013 476 426 183 1,411 517
git 3,183 2,301 1,102 1,762 3,556 2,512 1,549 98 378 107 491 475
libarchieve 1,655 1,282 723 896 1,265 1,052 752 226 115 137 208 76
openVPN 793 792 474 537 708 555 378 75 49 62 168 24
Sum. 45,296 41,658 17,513 29,538 57,753 41,996 25,609 3,189 5,503 3,448 7,172 6,297

provide an ablation study and compare SPatch’s performance with
a recent work Spider in §6.2.3.

6.2.1 Results. Table 1 provides the final results (i.e., SPs) and in-
termediate outcomes at each stage (e.g., 𝑆𝑃𝑑𝑓 shows the number
of SPs identified in the static analysis phase). SPatch examined
45,296 commits, of which 41,658 (91.97%) were non-merge com-
mits. Among the non-merge commits, 17,513 (38.66% of the total)
updated one or more C/C++ functions that were used in the soft-
ware building process and were subsequently analyzed by SPatch.
We checked the commits that were not covered by SPatch and
found they were mainly the ones that 1) implemented functional-
ities (ext3 in the Linux kernel) that were not enabled by default,
2) were tailored to other computer architectures, or 3) were writ-
ten in languages other than C/C++ (e.g., text files). Additionally,
SPatch did not analyze certain commits even though they updated
C/C++ files compiled during the software building process, as these
updates only involved global scope statements and not functions.

The fifth column of Table 1 lists the numbers of functions up-
dated in the 17,513 commits. In total, 29,538 C/C++ functions were
updated and SPatch extracted 57,753 edit actions from them. After
merging the edit actions that had data dependencies into CUs (§4.2),
we obtained 41,996 CUs. SPatch filtered out 6,063 CUs that wrote
to unknown pointers or updated loop statements, and 10,324 CUs
that caused compilation errors. The remaining 25,609 CUs (60.98%
of the total CUs) were the SP candidates for the following static and
DSE analysis. SPatch detected 3,189 SPs from all these SP candi-
dates using static analysis. For the remaining 22,420 SP candidates,
SPatch successfully conducted DSE for 16,123 (71.91%) cases and
terminated DSE for the rest (reasons are detailed in §4.3.2). Among
the 16,123, SPatch identified 8,951 SPs, resulting in a total of 12,140
SPs.

6.2.2 False Positives and False Negatives. As there is no ground
truth dataset, we randomly selected 100 CUs and identified if they
were SPs by manually checking C1 and C2. In this way, we estimate
SPatch’s false positives and false negatives. Some CUs are complex.

Table 2: Ablation study results. Spider represents the baseline,

SPatch𝑝 denotes the number of safe and partially-safe commits

identified with intra-procedural analysis, and SPatch𝑖𝑡 denotes the

number of safe commits identified with inter-procedural analysis.

Software Spider SPatch𝑝 SPatch𝑖𝑡 SPatch
Linux kernel 736 802 1,007 1,752
python interpreter 243 416 290 792
PHP interpreter 91 152 129 233
OpenSSL 363 401 475 807
FFmpeg 102 179 104 243
libpng 322 453 420 891
lua 374 457 522 631
binutils-gdb 137 377 206 886
git 97 116 154 209
libarchieve 238 260 251 296
openVPN 109 163 127 219
total 2,812 3,776 3,684 6,959

We were able to accurately analyze 92 CUs and found that 29 CUs
were SPs (the ground truth). SPatch detected 24 SPs with no false
positives and 5 false negatives. We emphasize the importance of
no false positives (no unsafe code changes are detected as safe) as
this enhances SPatch’s potential usability.

6.2.3 Ablation Study. In this subsection, we present the ablation
study of each component in SPatch. We specifically evaluate the
benefits of considering partially-safe commits and analyzing mod-
ifications to external calls. We also use Spider, a state-of-the-art
tool for analyzing the functional impacts of commits, as the base-
line for comparison. Despite our attempts to obtain the code and
dataset from the authors, we have not been successful in acquiring
them. Nonetheless, our ablation study allows us to replicate Spi-
der’s design. We performed intra-procedural symbolic execution
on all updated functions within a commit. By counting the number
of commits where all code modifications to C/C++ files are SPs,
we obtained the results of Spider. Note that we did not include
Upgradvisor as it 1) analyzed Python projects rather than C/C++

Strengthening Supply Chain Security with Fine-grained Safe Patch Identification ICSE ’24, April 14–20, 2024, Lisbon, Portugal

projects and 2) involved manual examination and was difficult to
scale to the level of many (17,513) commits in our dataset.

The results of Spider are listed in the second column of Table 2.
In total, our implementation of Spider (i.e., the baseline) identified
2,812 (16.06% of) commits as SPs (or safe commits). In contrast,
SPatch identified 6,959 commits (2.47× of Spider) that partially or
solely included SPs, as demonstrated in the fifth column of Table 2.

To better understand SPatch’s performance, we first evaluate
the benefits of analyzing modifications to function calls. In the
fourth column, we listed the results of SPs detected by SPatch𝑖𝑡 .
SPatch𝑖𝑡 identified more (1.31× than Spider) SPs because of its
ability to symbolically interpret function calls in these commits.

In addition to inter-procedural analysis, SPatch also conducted
a fine-grained identification of SPs. This allowed SPatch to identify
partially-safe commits. SPatch𝑝 in Table 2 denotes the sum of
partially-safe commits and safe commits identified by SPatch using
intra-procedural analysis. In addition to 2,812 safe commits, the
fine-grained analysis alone enabled SPatch𝑝 to detect 964 (34.28%
of safe commits) partially-safe commits.

Our ablation study stressed the importance of combining the
two techniques—considering partially-safe commits and symboli-
cally interpreting function calls—to effectively identify SPs. SPatch
detected more (partially-)safe commits (1.84 times of SPatch𝑝 and
1.90 times of SPatch𝑖𝑡) compared to using a single technique. The
results indicated that many SPs involving modifications to function
calls were code snippets committed alongside other code modifica-
tions. Listing 1 is such an example.

6.3 Security Implications

In this subsection, we evaluate the security benefits of SPatch by
comprehensively detecting SPs. We also compare our approach
with Spider regarding the security implications of SPs.

6.3.1 Security Patches. We evaluate the security benefits of SPatch.
To this end, we randomly selected 100 non-merge commits from
each software project in the evaluation dataset, resulting in 1,100
commits. We used SPatch to identify SPs in those commits and
counted the number of security patches among the SPs.

Since there is no ground truth of security patches in commits,
we analyzed each commit to pinpoint the included security patches
if any. We first identified the commits that fixed vulnerabilities by
checking if 1) they were the patches for fixing known CVEs, 2) they
were in the security patch database [35], or 3) the commit messages
explicitly mentioned that the commits fixed security vulnerabili-
ties. We then located security patches in those commits based on
the vulnerability information, e.g., if the code sanitized variables
that might cause overflow. A commit might fix multiple vulner-
abilities (e.g., it adds the same input validation check in multiple
vulnerable functions). We consider multiple fixes in one commit
as one security patch, and SPatch is considered to have found an
incomplete security patch if it detects at least one but not all fixes in
that commit. In total, we identified 52 security patches. We believe
the volume of security patches used as our dataset is sufficiently
large, as related works on security patch detection, such as [33],
use similar numbers.

We list the analysis results in Table 3. Overall, SPatch deter-
mined 40 safe security patches (including 5 incomplete security

Table 3: Evaluation of security patches on 1,100 commits. Spider𝑆𝑃

denotes the number of safe commits identified by Spider. SPatch𝑆𝑃

denote the number of safe and partially-safe commits identified by

SPatch. Spider𝑠𝑒𝑐 and SPatch𝑠𝑒𝑐 denote the number of commits

that include security patches among Spider𝑆𝑃 and SPatch𝑆𝑃 , re-

spectively. T𝑠𝑒𝑐 denotes the total number of commits that include

security patches.

Software Spider𝑆𝑃 Spider𝑠𝑒𝑐 SPatch𝑆𝑃 SPatch𝑠𝑒𝑐 T𝑠𝑒𝑐
Linux kernel 13 2 33 4 5
python interpreter 7 1 17 2 3
PHP interpreter 12 4 23 7 10
OpenSSL 12 2 20 3 5
FFmpeg 8 1 14 1 2
libpng 5 0 16 0 1
lua 18 3 25 6 6
binutils-gdb 21 2 27 5 7
git 12 1 27 4 4
libarchieve 11 2 19 2 2
openVPN 9 3 29 6 7
total 128 21 250 40 52

patches) among 52 (the ground truth of total security patches),
achieving a recall rate of 76.92% for all security patches. Yet Spi-
der only pinpointed 21 (40.38%) safe security patches due to the
false negatives in its design. Upon further investigation, we found
that among the security patches detected by SPatch but missed by
Spider, 15 involved modifications to function calls, and 7 were im-
plemented as partially-safe commits (3 of which were partially-safe
commits involving modifications to function calls).

We also investigated the reasons for the security patches that
SPatch failed to detect. First, we did not detect some security
patches that involved global scope edits or directly updated the
statements in loops. Second, a few security patches were not SPs.
For instance, the patch to CVE-2016-10087 fixed a NULL pointer
dereference by updating one of the function outputs. These security
patches might affect functionalities and whether deploying them
or not became a trade-off for maintainers.

6.4 End-to-end Case Studies

In this subsection, we demonstrate SPatch’s capabilities in assisting
patch propagation with two case studies.

6.4.1 Redis. Redis is a popular in-memory database. It currently
uses Lua v5.1 as one of its dependencies. We updated 298 functions
in Lua using the detected SPs from version v5.1 to the latest version,
aligning the syntax modifications in Redis as necessary. Our up-
dated software successfully passed all test suites (89 tasks in total).
Note that we failed to build Redis by updating Lua to the latest
version. The compatibility issues of using different versions of Lua
were observed in other downstream projects like Wireshark [4].

We investigated the security benefits of applying SPs to update
Lua. SPatch identified SPs that fixed nine CVEs, while Spider, by
design, only found three of them. Although Redis developers ported
five, four were still not propagated to Redis. We submitted those
four safe patches. The maintainers’ investigation revealed that three
patches were associated with Lua components that were not utilized
in Redis. They prioritized merging one into the latest version.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Changhua Luo, Wei Meng, and Shuai Wang

6.4.2 ProtonVPN. ProtonVPN is a VPN service software project
with more than 10 million downloads on Google Play [5]. We found
that the software was built upon OpenVPN, which utilized an out-
dated version of OpenSSL. It might not be realistic to upgrade the
OpenSSL library because of the potential compatibility issue [26].
We employed SPatch to identify the SPs in OpenSSL.We updated in
total 167 functions in ProtonVPN by merging SPs in 2,268 commits.
After manually porting these SPs, we built the software successfully
and used it to connect to a VPN server without meeting any issues.
All four detected safe security patches have been merged into Pro-
tonVPN, and we received a bounty for addressing vulnerabilities in
the outdated dependency code of ProtonVPN.

6.5 Performance

In the subsection, we discuss the analysis time of SPatch from two
perspectives, at the commit level and the CU level.

6.5.1 Commit-level Performance. SPatch spent a total of 144.05
hours detecting 12,140 SPs among the 45,296 commits, covering
the entire process from fetching these commits to obtaining SPs.
The time used in different commits varied a lot, depending on the
code changes actually analyzed by SPatch. Further details on this
variation and performance breakdown are discussed in §6.5.2.

Next, we describe the time used for analyzing merge commits
and non-merge commits. Merge commits, especially in projects
like the Linux kernel, could include code changes spanning over
thousands of C/C++ files. Performing program analysis (e.g., gener-
ating and analyzing CUs) on these commits was time-consuming.
For example, we ran program analysis on one commit updating
over 5,000 C/C++ files in the Linux kernel, and the analysis was not
finished within 1 hour. This motivated the methods described in
§4.3.4, where we could obtain SPs in a merge commit𝐶𝑚 quickly by
merging the SPs in 𝐶𝑚 ’s other parent commits. However, certain
non-merge commits can also update many C/C++ files. To handle
such complex non-merge commits, we have set a limit, allowing
the analysis of a maximum of 500 updated functions per commit
(after excluding the functions not used in the compilation). In cases
where the significant code changes within a non-merge commit
exceeded this threshold, SPatch moved on and fetched the sub-
sequent commit without completing the analysis of the current
commit. Our experiments indicated that this was uncommon (< 1%),
occurring only during evaluating a few major updates.

6.5.2 CU-level Performance. Since we analyzed SPs on a per CU
basis, the number of CUs directly affected the analysis time. Follow-
ing our design, we break down the analysis time into two phases,
generating CUs and detecting SPs from CUs.

It took SPatch 35.92 hours to generate 41,996 CUs from all com-
mits. The average time to generate a CU was 3.1 seconds, which
included the time used to generate edit actions (<1 second) and
static data-flow analysis (>2 seconds). During the data-flow analy-
sis, parsing a C/C++ function into Code Property Graphs (CPGs)
took more than 1 second. SPatch was able to identify SP candi-
dates among CUs in negligible time. It reused CPGs to perform the
data-flow analysis needed in §4.2.2. Note that during compatibility
testing, SPatch used the GCC compiler instead of Juxta.

SPatch spent 108.13 hours detecting SPs among the 25,609 can-
didates (15.20 seconds per candidate on average). The time used for
different candidates also varied. For the candidates that did not go
through symbolic execution, SPatch could quickly identify if they
were SPs. For each remaining candidate, the analysis time involved
two steps: 1) compiling the original and updated functions using the
modified Juxta and 2) using the z3 solver to solve constraints (5 sec-
onds as the time limit). Using our on-demand symbolic execution,
computing symbolic expressions of path constraints and function
outputs for a function often took less than 7 seconds. This duration
included: 1) the compilation phase where symbolic execution took
place and 2) scanning the symbolic execution results produced by
the modified Juxta and stored in files.

7 DISCUSSION

Threats to Validity In this work, we have employed techniques
to identify partially-safe commits, allowing us to detect more SPs.
One may question the security benefits of partially-safe commits as
they may not completely fix vulnerabilities. For instance, a security
patch commit may address vulnerabilities in multiple functions, but
SPatch only identifies safe patches in some functions, leaving the
vulnerabilities unfixed in the remaining functions. We report that
among the 40 safe security patches identified in §6.3.1, five were
incomplete patches due to this reason. Nevertheless, we advocate
the usage of SPatch given applying its uncovered patches generally
reduces the attack surface to a large extent.
Comparison with Upgradvisor SPatch shares similar goals (i.e.,
porting patches that preserve functionality to downstream) as Up-
gradvisor, but focuses on different aspects. Upgradvisor reduces
human overload to investigate the functional impacts of patches.
In contrast, SPatch represents an automated technique to infer the
patches likely to preserve functionality. As an automated method,
SPatch cannot guarantee that the detected SPs preserve functional-
ity as expected by humans. Nevertheless, it has the benefit of scaling
to a large number of commits without requiring manual analysis of
runtime traces. Additionally, SPatch and Upgradvisor operate in
distinct domains (C/C++ and Python, respectively). Therefore, we
believe that the two works have advantages in different scenarios
and distinct application scopes.

8 RELATEDWORK

Supply Chain Security.Many works studied the security issues in
supply chain systems. Xie et al. [11] and Reid et al. [29] found that
many projects reused out-of-date code containing security vulnera-
bilities. Ishio et al. [14] andWoo et al. [39] further revealed that most
(95% of) open-sourced components were reused with some modifi-
cations in downstream. A few works also detected (e.g., [16, 38, 41])
and exploited ([7, 8]) the vulnerabilities in the unpatched code.
For example, VUDDY detected vulnerabilities introduced by code
clones [16]. MVP [41] detected recurring vulnerabilities by match-
ing vulnerability and patch signatures. VulScope [8] aligned PoCs
to exploit vulnerabilities in unpatched versions.

Maintaining third-party libraries requires non-trivial human ef-
fort. In this work, we comprehensively detect and port safe patches
to address security issues in outdated dependency code.

Strengthening Supply Chain Security with Fine-grained Safe Patch Identification ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Patch Analysis. Some works analyze the code changes in up-
stream software to assist patch propagation. Many researchers dis-
tinguished the security patches from other code changes [31, 33, 40].
For example, GraphSPD [33] and PatchRNN [36] trained a deep
learning model to detect security patches in C/C++ programs, and
Tian et al. [31] utilized textual features to identify security patches
in Linux. Wang et al. [37] leveraged random forest to classify secu-
rity patches into specific types. Soto et al. [30] conducted a large-
scale study on Java security patches and provided insights into
automated code repair in Java programs. In contrast, Spider [24]
prioritizes functionality over security. It enables downstream de-
velopers to use or prioritize investigating some portable patches.

9 CONCLUSION

This work demonstrates the importance of detecting fine-grained
SPs for efficient patch porting. To achieve this, we have developed
SPatch, which incorporates several techniques. First, SPatch ana-
lyzes code changes at a CU granularity, distinguishing itself from
many prior works focusing on commits. Second, we propose a new
DSE technique that efficiently analyzes the functional impacts of
code changes. Our evaluation results show that SPatch provides
more security benefits compared to prior tools. The two case stud-
ies further demonstrate that SPatch brings observable security
benefits without incurring regression issues.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
helpful suggestions and comments. Thework described in this paper
was partly supported by a grant from the Research Grants Coun-
cil of the Hong Kong SAR, China (Project No.: CUHK 14209323).
Shuai Wang was supported in part by contracts RMGS23CR17 and
RMGS24EG02.

REFERENCES

[1] 2020. Proceedings of the 29th USENIX Security Symposium (Security). Virtual
Event.

[2] 2022. Proceedings of the 43nd IEEE Symposium on Security and Privacy (Oakland).
San Francisco, CA, USA.

[3] 2022. Proceedings of the 44th International Conference on Software Engineering
(ICSE). Pittsburgh, PA, USA.

[4] 2023. Lua version used for wireshark dissectors. https://github.com/o-gs/dji-
firmware-tools/issues/153.

[5] Proton AG. 2023. Proton VPN. https://play.google.com/store/apps/details?
id=ch.protonvpn.android&utm_campaign=ww-all-2a-vpn-int_site-g_acq-
apps_links_free_vpn_page&utm_source=protonvpn.com&utm_medium=link&
utm_content=free_vpn_page&utm_term=android&pli=1.

[6] Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDiff: scaling
program equivalence checking via iterative abstraction and refinement of com-
mon code. In Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
Sacramento, CA, USA.

[7] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Auto-
matic patch-based exploit generation is possible: Techniques and implications.
In 2008 IEEE Symposium on Security and Privacy (sp 2008). Oakland, CA, USA.

[8] Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu, Zicheng Wu, Xinyu Xing,
and Min Yang. 2021. Facilitating vulnerability assessment through poc migration.
In Proceedings of the 28th ACM Conference on Computer and Communications
Security (CCS). Virtual Event, Korea.

[9] Yaniv David, Xudong Sun, Raphael J Sofaer, Aditya Senthilnathan, Junfeng
Yang, Zhiqiang Zuo, Guoqing Harry Xu, Jason Nieh, and Ronghui Gu. 2020.
{UPGRADVISOR}: Early Adopting Dependency Updates Using Hybrid Program
Analysis and Hardware Tracing. In Proceedings of the 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). Carlsbad, CA, USA.

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software

engineering. 313–324.
[11] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from

here, some from there: Cross-project code reuse in github. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 291–301.

[12] Google. 2023. Bad Binder: Android In-The-Wild Exploit. https:
//googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-
exploit.html.

[13] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using safety properties
to generate vulnerability patches. In Proceedings of the 40th IEEE Symposium on
Security and Privacy (Oakland). San Francisco, CA, USA.

[14] Takashi Ishio, Yusuke Sakaguchi, Kaoru Ito, and Katsuro Inoue. 2017. Source file
set search for clone-and-own reuse analysis. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, 257–268.

[15] Zheyue Jiang, Yuan Zhang, Jun Xu, Xinqian Sun, Zhuang Liu, and Min Yang.
2022. AEM: Facilitating Cross-Version Exploitability Assessment of Linux Kernel
Vulnerabilities, See [2].

[16] Seulbae Kim, SeunghoonWoo, Heejo Lee, and Hakjoo Oh. 2017. Vuddy: A scalable
approach for vulnerable code clone discovery. In Proceedings of the 38th IEEE
Symposium on Security and Privacy (Oakland). San Jose, CA, USA.

[17] Klee. 2023. KLEE Symbolic Execution Engine. KLEESymbolicExecutionEngine.
[18] Nir Kshetri and Jeffrey Voas. 2019. Supply chain trust. IT Professional 21, 2 (2019),

6–10.
[19] Yuxiang Lei and Yulei Sui. 2019. Fast and precise handling of positive weight

cycles for field-sensitive pointer analysis. In Static Analysis: 26th International
Symposium, SAS 2019, Porto, Portugal, October 8–11, 2019, Proceedings 26. Springer,
27–47.

[20] Kangjie Lu and Hong Hu. 2019. Where does it go? refining indirect-call targets
with multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 1867–1881.

[21] Lua. 2015. Potential arithmetic overflow in Lua. https://clang-analyzer.llvm.org/
scan-build.html.

[22] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE). Hong
Kong.

[23] Yunlong Lyu, Yi Fang, Yiwei Zhang, Qibin Sun, Siqi Ma, Elisa Bertino, Kangjie
Lu, and Juanru Li. 2022. Goshawk: Hunting Memory Corruptions via Structure-
Aware and Object-Centric Memory Operation Synopsis, See [2].

[24] Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel, and Giovanni
Vigna. 2020. Spider: Enabling fast patch propagation in related software reposito-
ries. In Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland).
San Francisco, CA, USA.

[25] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking semantic correctness: The case of finding file
system bugs. In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP). Monterey, CA, USA.

[26] openvpn. 2023. Compatiblity issues in OpenVPN. https://forums.openvpn.net/
viewtopic.php?t=35028.

[27] Suzette Person, Matthew B Dwyer, Sebastian Elbaum, and Corina S Pǎsǎreanu.
2008. Differential symbolic execution. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering. 226–237.

[28] Redis. 2023. Redis. https://github.com/redis/redis/blob/unstable/deps/README.
md.

[29] David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The extent of
orphan vulnerabilities from code reuse in open source software, See [3].

[30] Mauricio Soto, Ferdian Thung, Chu-Pan Wong, Claire Le Goues, and David
Lo. 2016. A deeper look into bug fixes: patterns, replacements, deletions, and
additions. In Proceedings of the 13th International Conference on Mining Software
Repositories. 512–515.

[31] Yuan Tian, Julia Lawall, and David Lo. 2012. Identifying linux bug fixing patches.
In Proceedings of the 34th International Conference on Software Engineering (ICSE).
Zurich, Switzerland.

[32] Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing
error handling bugs in c. In Proceedings of the 11th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). Paderborn, Germany.

[33] Shu Wang, Xinda Wang, Kun Sun, Sushil Jajodia, Haining Wang, and Qi Li. 2022.
GraphSPD: Graph-Based Security Patch Detection with Enriched Code Semantics,
See [2].

[34] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2020. An empirical
study of secret security patch in open source software. Adaptive Autonomous
Secure Cyber Systems (2020), 269–289.

[35] XindaWang, ShuWang, Pengbin Feng, Kun Sun, and Sushil Jajodia. 2021. Patchdb:
A large-scale security patch dataset. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 149–160.

https://github.com/o-gs/dji-firmware-tools/issues/153
https://github.com/o-gs/dji-firmware-tools/issues/153
https://play.google.com/store/apps/details?id=ch.protonvpn.android&utm_campaign=ww-all-2a-vpn-int_site-g_acq-apps_links_free_vpn_page&utm_source=protonvpn.com&utm_medium=link&utm_content=free_vpn_page&utm_term=android&pli=1
https://play.google.com/store/apps/details?id=ch.protonvpn.android&utm_campaign=ww-all-2a-vpn-int_site-g_acq-apps_links_free_vpn_page&utm_source=protonvpn.com&utm_medium=link&utm_content=free_vpn_page&utm_term=android&pli=1
https://play.google.com/store/apps/details?id=ch.protonvpn.android&utm_campaign=ww-all-2a-vpn-int_site-g_acq-apps_links_free_vpn_page&utm_source=protonvpn.com&utm_medium=link&utm_content=free_vpn_page&utm_term=android&pli=1
https://play.google.com/store/apps/details?id=ch.protonvpn.android&utm_campaign=ww-all-2a-vpn-int_site-g_acq-apps_links_free_vpn_page&utm_source=protonvpn.com&utm_medium=link&utm_content=free_vpn_page&utm_term=android&pli=1
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
KLEE Symbolic Execution Engine
https://clang-analyzer.llvm.org/scan-build.html
https://clang-analyzer.llvm.org/scan-build.html
https://forums.openvpn.net/viewtopic.php?t=35028
https://forums.openvpn.net/viewtopic.php?t=35028
https://github.com/redis/redis/blob/unstable/deps/README.md
https://github.com/redis/redis/blob/unstable/deps/README.md

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Changhua Luo, Wei Meng, and Shuai Wang

[36] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil Jajodia, Sanae Ben-
chaaboun, and Frank Geck. 2021. Patchrnn: A deep learning-based system for
security patch identification. InMILCOM 2021-2021 IEEEMilitary Communications
Conference (MILCOM). IEEE, 595–600.

[37] Xinda Wang, Shu Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2020. A
machine learning approach to classify security patches into vulnerability types.
In 2020 IEEE Conference on Communications and Network Security (CNS). IEEE,
1–9.

[38] SeunghoonWoo, Hyunji Hong, Eunjin Choi, and Heejo Lee. 2022. {MOVERY}: A
Precise Approach for Modified Vulnerable Code Clone Discovery from Modified
{Open-Source} Software Components. In Proceedings of the 29th ACM Conference
on Computer and Communications Security (CCS). Los Angeles, CA, USA.

[39] Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh. 2022.
CENTRIS: A precise and scalable approach for identifying modified open-source
software reuse, See [3].

[40] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely char-
acterizing security impact in a flood of patches via symbolic rule comparison. In

Proceedings of the 2020 Annual Network and Distributed System Security Sympo-
sium (NDSS). San Diego, CA, USA.

[41] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, and Feng Li. 2020.
MVP : Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures,
See [1].

[42] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and discovering vulnerabilities with code property graphs. In Proceedings of the
35th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA, USA.

[43] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau. 2020. An Investigation
of the Android Kernel Patch Ecosystem., See [1].

[44] Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing Liu, and Yang Liu. 2021.
Spi: Automated identification of security patches via commits. ACM Transactions
on Software Engineering and Methodology (TOSEM) 31, 1 (2021), 1–27.

[45] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian. 2022.
{SyzScope}: Revealing {High-Risk} Security Impacts of {Fuzzer-Exposed} Bugs
in Linux kernel. In Proceedings of the 31st USENIX Security Symposium (Security).
Boston, MA, USA.

	Abstract
	1 Introduction
	2 Background
	2.1 Supply Chain Vulnerabilities
	2.2 Security Patches
	2.3 Patches Preserving Functionality

	3 Problem Statement
	3.1 A Motivating Example
	3.2 Research Goals and Scope

	4 Design
	4.1 Overview
	4.2 Grouping Code Changes
	4.3 Identifying SPs

	5 Implementation
	5.1 Static Analysis
	5.2 Cross-function Mapping
	5.3 Compiling Minified Programs
	5.4 Differential Symbolic Execution

	6 Evaluation
	6.1 Experiment Setups
	6.2 SPs in Commits
	6.3 Security Implications
	6.4 End-to-end Case Studies
	6.5 Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	References

